Experimental and theoretical differential cross sections for the reactions between Cl atoms and two isotopic variants of molecular hydrogen (H2 and D2) are presented. The experimental results have been obtained by using the crossed molecular beam method with mass spectrometric detection. The theoretical results have been computed using both the quasiclassical trajectory and quantum mechanical (QM) methods. The potential energy surface employed for the calculations is the ab initio BW2 surface by Bian and Werner [J. Chem. Phys. 112, 220 (2000)]. The theoretical results have been directly compared to the experiments in the laboratory frame at a collision energy (Ec) of 4.25 and 5.85 kcal/mol for the Cl+H2 reaction and of 4.9 and 6.3 kcal/mol for the Cl+D2 reaction. The agreement between QM results and experiment is quite satisfactory for the Cl+D2 reaction, especially for the low collision energy, while for Cl+H2 is less good, especially when considering data at the lower Ec.

1.
S. S.
Kumaran
,
K. P.
Lim
, and
J. V.
Michael
,
J. Chem. Phys.
101
,
9487
(
1994
).
2.
T. C. Allison, S. L. Mielke, D.W. Schwenke, G. C. Lynch, M. S. Gordon, and D. G. Truhlar, in Gas-Phase Reaction Systems: Experiments and Models 100 Years after Max Bodenstein, edited by J. Wolfum, H.-R. Volpp, R. Rannacher, and J. Warnatz (Springer, Heidelberg, 1996), p. 111.
3.
P.
Casavecchia
,
Rep. Prog. Phys.
63
,
355
(
2000
).
4.
M.
Alagia
,
N.
Balucani
,
P.
Casavecchia
,
D.
Stranges
, and
G. G.
Volpi
,
J. Chem. Soc., Faraday Trans.
91
,
575
(
1995
).
5.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
et al.,
Science
273
,
1519
(
1996
).
6.
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
et al.,
Phys. Chem. Chem. Phys.
2
,
599
(
2000
).
7.
S.-H.
Lee
,
L.-H.
Lai
,
K.
Liu
, and
H.
Chang
,
J. Chem. Phys.
110
,
8229
(
1999
).
8.
S.-H.
Lee
and
K.
Liu
,
J. Chem. Phys.
111
,
6253
(
1999
).
9.
D.
Skouteris
,
D. E.
Manolopoulos
,
W.
Bian
,
H.-J.
Werner
,
L.-H.
Lai
, and
K.
Liu
,
Science
286
,
1713
(
1999
).
10.
S. A.
Kandel
,
A. J.
Alexander
,
Z. H.
Kim
,
R. N.
Zare
,
F. J.
Aoiz
,
L.
Bañares
,
J. F.
Castillo
, and
V. S.
Rabanos
,
J. Chem. Phys.
112
,
670
(
2000
).
11.
N.
Balucani
,
L.
Cartechini
,
P.
Casavecchia
,
G. G.
Volpi
,
F. J.
Aoiz
,
L.
Bañares
,
M.
Menéndez
,
W.
Bian
, and
H.-J.
Werner
,
Chem. Phys. Lett.
328
,
500
(
2000
).
12.
T. C.
Allison
,
G. C.
Lynch
,
D. G.
Truhlar
, and
M. S.
Gordon
,
J. Phys. Chem.
100
,
13575
(
1996
).
13.
M. J.
Stern
,
A.
Persky
, and
F. S.
Klein
,
J. Chem. Phys.
58
,
5697
(
1973
);
M. J.
Stern
,
A.
Persky
, and
F. S.
Klein
,
Chem. Phys. Lett.
121
,
475
(
1985
).
14.
D. W.
Schwenke
,
S. C.
Tucker
,
B.
Steckler
,
F. B.
Brown
,
G. C.
Lynch
,
D. G.
Truhlar
, and
B. C.
Garrett
,
J. Chem. Phys.
90
,
3110
(
1989
).
15.
S. L.
Mielke
,
T. C.
Allison
,
D. G.
Truhlar
, and
D. W.
Schwenke
,
J. Phys. Chem.
100
,
13588
(
1996
).
16.
F. J.
Aoiz
and
L.
Bañares
,
J. Phys. Chem.
100
,
18108
(
1996
).
17.
H.
Wang
,
W. H.
Thompson
, and
W. H.
Miller
,
J. Chem. Phys.
107
,
7194
(
1997
).
18.
B.-H.
Yang
,
B.-Y.
Tang
,
H.-M.
Yin
,
K.-L.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
113
,
7182
(
2000
).
19.
W.
Bian
and
H.-J.
Werner
,
J. Chem. Phys.
112
,
220
(
2000
).
20.
U.
Manthe
,
W.
Bian
, and
H.-J.
Werner
,
Chem. Phys. Lett.
313
,
647
(
1999
).
21.
P. J. Aoiz, L. Bañares, J. F. Castillo, M. Menéndez, D. Skouteris, and H.-J. Werner, J. Chem. Phys. (submitted).
22.
B.-H.
Yang
,
H.-M.
Yin
,
K.-L.
Han
, and
J. Z. H.
Zhang
,
J. Phys. Chem. A
104
,
10517
(
2000
).
23.
B.-H.
Yang
,
H.-T.
Gao
,
K.-L.
Han
, and
J. Z. H.
Zhang
,
J. Chem. Phys.
113
,
1434
(
2000
).
24.
G. Capecchi and H.-J. Werner (in preparation).
25.
G. Capecchi, M. H. Alexander, and H.-J. Werner (in preparation).
26.
P.
Casavecchia
,
N.
Balucani
, and
G. G.
Volpi
,
Annu. Rev. Phys. Chem.
50
,
347
(
1999
);
P.
Casavecchia
,
N.
Balucani
,
M.
Alagia
,
L.
Cartechini
, and
G. G.
Volpi
.,
Acc. Chem. Res.
32
,
503
(
1999
).
27.
K.
Sköld
,
Nucl. Instrum. Methods
63
,
114
(
1968
).
28.
M.
Alagia
,
N.
Balucani
,
P.
Casavecchia
, and
G. G.
Volpi
,
J. Phys. Chem. A
101
,
6455
(
1997
);
M.
Alagia
,
N.
Balucani
,
L.
Cartechini
,
P.
Casavecchia
,
M.
van Beek
,
G. G.
Volpi
,
L.
Bonnet
, and
J. C.
Rayez
,
Faraday Discuss.
113
,
133
(
1999
);
N.
Balucani
,
L.
Beneventi
,
P.
Casavecchia
,
D.
Stranges
, and
G. G.
Volpi
,
J. Chem. Phys.
94
,
8611
(
1991
).
29.
N.
Balucani
,
M.
Alagia
,
L.
Cartechini
,
P.
Casavecchia
,
G. G.
Volpi
,
K.
Sato
,
T.
Takayanagi
, and
Y.
Kurosaki
,
J. Am. Chem. Soc.
122
,
4443
(
2000
);
N.
Balucani
,
L.
Cartechini
,
M.
Alagia
,
P.
Casavecchia
, and
G. G.
Volpi
,
J. Phys. Chem. A
104
,
5655
(
2000
).
30.
A.
Bergeat
,
L.
Cartechini
,
N.
Balucani
,
G.
Capozza
,
L.
Phillips
,
P.
Casavecchia
,
G. G.
Volpi
,
L.
Bonnet
, and
J. C.
Rayez
,
Chem. Phys. Lett.
327
,
197
(
2000
).
31.
M.
Alagia
,
N.
Balucani
,
P.
Casavecchia
,
D.
Stranges
, and
G. G.
Volpi
,
J. Chem. Phys.
98
,
8341
(
1993
);
M.
Alagia
,
N.
Balucani
,
P.
Casavecchia
,
D.
Stranges
,
G. G.
Volpi
,
D. C.
Clary
,
A.
Kliesch
, and
H.-J.
Werner
,
Chem. Phys.
207
,
389
(
1996
).
32.
M.
Alagia
,
V.
Aquilanti
,
D.
Ascenzi
,
N.
Balucani
,
D.
Cappelletti
,
L.
Cartechini
,
P.
Casavecchia
,
F.
Pirani
,
G.
Sanchini
, and
G. G.
Volpi
,
Isr. J. Chem.
37
,
29
(
1997
).
33.
J. E.
Pollard
,
D. J.
Trevor
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Chem. Phys.
77
,
4818
(
1982
).
34.
D.
Skouteris
,
J. F.
Castillo
, and
D. E.
Manolopoulos
,
Comput. Phys. Commun.
133
,
128
(
2000
).
35.
G. C.
Schatz
,
Chem. Phys. Lett.
150
,
92
(
1988
).
36.
D. E.
Manolopoulos
,
J. Chem. Phys.
85
,
6425
(
1986
).
37.
F. J.
Aoiz
,
L.
Bañares
, and
V. J.
Herrero
,
J. Chem. Soc., Faraday Trans.
94
,
2483
(
1998
).
38.
The BW2 has been derived without SO coupling and, therefore, the theoretical enthalpy of reaction is referred to the average energy of the Cl(2P) spin–orbit states, namely, (2E3/2+E1/2)/3. The spin–orbit coupling will lower the asymptotic Cl(2P3/2) energy by 0.84 kcal/mol. Because of the energetics of the process, the use of the theoretical enthalpy of reaction would affect the comparison with the experimental distributions.
39.
K. Liu (private communication).
40.
M. H.
Alexander
,
H.-J.
Werner
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
109
,
5710
(
1998
).
41.
M. H.
Alexander
,
D. E.
Manolopoulos
, and
H.-J.
Werner
,
J. Chem. Phys.
113
,
11084
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.