Gaussian-3 (G3) theory is extended to molecules containing the third-row nontransition elements K, Ca, Ga–Kr. Basis sets compatible with those used in G3 theory for molecules containing first- and second-row atoms have been derived. The G3 average absolute deviation from experiment for a set of 47 test reactions containing these elements is 0.94 kcal/mol. This is a substantial improvement over Gaussian-2 theory, which has an average absolute deviation of 1.43 kcal/mol for the same set. Variations of G3 theory are also presented that are based on reduced orders of perturbation theory. These variations also show similar improvement over the corresponding G2 methods. The use of scaling parameters in G3 theory for the third row was investigated and found to perform nearly as well as use of the higher level correction. In addition, these methods are evaluated on a set of molecules containing K and Ca for which the experimental data are not accurate enough for them to be included in the test set. Results for this set indicate that G3 theory performs significantly better than G2 for molecules containing Ca. When the 47 third-row systems are added to the G3/99 database the complete G3 average absolute deviation becomes 1.06 kcal/mol for 423 energies.

1.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
2.
L. A.
Curtiss
,
M. P.
McGrath
,
J.-P.
Blaudeau
,
N. E.
Davis
, and
R.
Binning
,
J. Chem. Phys.
103
,
6104
(
1995
).
3.
J.-P.
Blaudeau
,
M. P.
McGrath
,
L. A.
Curtiss
, and
L.
Radom
,
J. Chem. Phys.
107
,
5016
(
1997
).
4.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
5.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
6.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
7.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
7374
(
2000
).
8.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
9.
L. A.
Curtiss
,
J. E.
Carpenter
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
96
,
9030
(
1992
).
10.
C. Moore, National Bureau of Standards (U.S.) Circular No. 467, 1952.
11.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lishka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J. G.
Zhao
,
Int. J. Quantum Chem., Quantum Chem. Symp.
22
,
149
(
1988
).
12.
J.-P.
Blaudeau
and
L. A.
Curtiss
,
Int. J. Quantum Chem.
60
,
943
(
1997
).
13.
J.-P. Blaudeau (private communication).
14.
B. J.
Duke
and
L.
Radom
,
J. Chem. Phys.
109
,
3352
(
1998
).
15.
C. W.
Bauschlicher
, Jr.
,
C. F.
Melius
, and
M. D.
Allendorf
,
J. Chem. Phys.
110
,
1879
(
1999
).
16.
C. A.
Richards
,
Y.
Yamaguchi
,
S.-J.
Kim
, and
H. F.
Schaefer
,
J. Chem. Phys.
104
,
8516
(
1996
).
17.
V. A. Rassolov, M. A. Ratner, J. A. Pople, P. C. Redfern, and L. A. Curtiss, J. Comput. Chem. (in press).
18.
R. C.
Binning
, Jr.
and
L. A.
Curtiss
,
J. Comput. Chem.
11
,
1206
(
1990
).
19.
V. A.
Rassolov
,
J. A.
Pople
,
M. A.
Ratner
, and
T. L.
Windus
,
J. Chem. Phys.
109
,
1223
(
1998
).
20.
C. C. J. Roothaan and P. S. Bagus, IBM Research Report No. RJ518, 1968.
21.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 98, Revision A.7, Gaussian, Inc., Pittsburgh PA (1998).
22.
http://chemistry.anl.gov/compmat/comptherm.htm
23.
G. S.
Kedziora
,
J. A.
Pople
,
V.
Rassolov
,
M. A.
Ratner
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Chem. Phys.
110
,
7123
(
1999
).
24.
R. Sharp, G. Kedziora, P. Redfern, L. A. Curtiss, and J. A. Pople (unpublished).
25.
L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties of Individual Substances, 4th ed. (Hemisphere, New York, 1989), Vols. I–III.
26.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
110
,
4703
(
1999
).
27.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
Chem. Phys. Lett.
313
,
600
(
1999
).
28.
P. C.
Redfern
,
J.-P.
Blaudeau
, and
L. A.
Curtiss
,
J. Phys. Chem.
101
,
8701
(
1997
).
29.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
1125
(
2000
).
30.
P. L.
Fast
,
M. L.
Sanchez
, and
D. G.
Truhlar
,
Chem. Phys. Lett.
306
,
407
(
1999
).
31.
P. L.
Fast
,
M. L.
Sanchez
,
J. C.
Corchado
, and
D. G.
Truhlar
,
J. Chem. Phys.
110
,
11679
(
1999
).
32.
P. L.
Fast
,
J. C.
Corchado
,
M. L.
Sanchez
, and
D. G.
Truhlar
,
J. Phys. Chem. A
103
,
5129
(
1999
).
33.
P. E. M.
Siegbahn
,
R. A. M.
Blomberg
, and
M.
Svensson
,
J. Chem. Phys.
102
,
5377
(
1995
).
34.
P. E. M.
Siegbahn
,
R. A. M.
Blomberg
, and
M.
Svensson
,
Chem. Phys. Lett.
223
,
35
(
1994
).
35.
A. G.
Baboul
,
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
110
,
7650
(
1999
).
36.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
A. G.
Baboul
, and
J. A.
Pople
,
Chem. Phys. Lett.
314
,
101
(
1999
).
37.
See EPAPS Document No. E-JCPSA6-114-313119 for the G3Large basis set without diffuse or polarization functions added.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory/epaps/. See the EPAPS homepage for more information.
38.
H.
Partridge
,
J. Chem. Phys.
90
,
1043
(
1989
).
39.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
66
,
1382
(
1979
).
40.
P. C.
Hariharan
and
J. A.
Pople
,
Chem. Phys. Lett.
66
,
217
(
1972
).
41.
M. M.
Francl
,
W. J.
Pietro
,
W. J.
Hehre
,
J. S.
Binkley
,
M. S.
Gordon
,
D. J.
Defrees
, and
J. A.
Pople
,
J. Chem. Phys.
77
,
3654
(
1982
).
42.
M. W.
Chaese
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syvervd
,
J. Phys. Chem. Ref. Data Suppl.
14
,
1
(
1985
). JANAF Thermochemical Tasks Third Edition.
43.
K. Huber and G. Herzberg, Molecular Spectra and Molecular Structure 4. Constants of Diatomic Molecules (Van Nostrand, Princeton, 1979).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.