The photodissociation dynamics of NCO have been examined using fast beam photofragment translational spectroscopy. Excitation of the 102,301, and 102302 transitions of the B̃ 2Π←X̃ 2Π band produces N(4S)+CO photofragments exclusively, while excitation of the 103303 transition yields primarily N(2D)+CO photoproducts. The translational energy [P(ET)] distributions yield D0(N–CO)=2.34±0.03 eV, and ΔHf,00(NCO)=1.36±0.03 eV. The P(ET) distributions exhibit vibrationally resolved structure reflecting the vibrational and rotational distributions of the CO product. The N(2D)+CO distribution can be fit by phase space theory (PST), while the higher degree of CO rotational excitation for N(4S)+CO products implies that NCO passes through a bent geometry upon dissociation. The P(ET) distributions suggest that when the B̃ 2Π←X̃ 2Π band is excited, NCO undergoes internal conversion to its ground electronic state prior to dissociation. Excitation of NCO at 193 nm clearly leads to the production of N(2D)+CO fragments. While conclusive evidence for the higher energy O(3P)+CN(X 2Σ+) channel was not observed, the presence of this dissociation pathway could not be excluded.

1.
R. A.
Perry
and
D. L.
Siebers
,
Nature (London)
324
,
657
(
1986
).
2.
J. A.
Miller
and
C. T.
Bowman
,
Int. J. Chem. Kinet.
23
,
289
(
1991
).
3.
H.
Okabe
,
J. Chem. Phys.
53
,
3507
(
1970
).
4.
B. J.
Sullivan
,
G. P.
Smith
, and
D. R.
Crosley
,
Chem. Phys. Lett.
96
,
307
(
1983
).
5.
X.
Liu
and
R. D.
Coombe
,
J. Chem. Phys.
91
,
7543
(
1989
).
6.
D. R.
Cyr
,
R. E.
Continetti
,
R. B.
Metz
,
D. L.
Osborn
, and
D. M.
Neumark
,
J. Chem. Phys.
97
,
4937
(
1992
).
7.
A. L. L.
East
and
W. D.
Allen
,
J. Chem. Phys.
99
,
4638
(
1993
).
8.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
100
,
4498
(
1994
).
9.
S. S.
Brown
,
H. L.
Berghout
, and
F. F.
Crim
,
J. Chem. Phys.
105
,
8103
(
1996
).
10.
M.
Zyrianov
,
T.
Drozgeorget
,
A.
Sanov
, and
H.
Reisler
,
J. Chem. Phys.
105
,
8111
(
1996
).
11.
G.
Schönnenbeck
and
F.
Stuhl
,
Chem. Phys. Lett.
264
,
199
(
1997
).
12.
R.
Holland
,
D. W. G.
Style
,
R. N.
Dixon
, and
D. A.
Ramsay
,
Nature (London)
182
,
337
(
1958
).
13.
R. N.
Dixon
,
Can. J. Phys.
38
,
10
(
1960
).
14.
R. N.
Dixon
,
Philos. Trans. R. Soc. London, Ser. A
252
,
165
(
1960
).
15.
D. E.
Milligan
and
M. E.
Jacox
,
J. Chem. Phys.
47
,
5157
(
1967
).
16.
P. S. H.
Bolman
,
J. M.
Brown
,
A.
Carrington
,
I.
Kopp
, and
D. A.
Ramsay
,
Proc. R. Soc. London, Ser. A
343
,
17
(
1975
).
17.
F. J.
Northrup
,
M.
Wu
, and
T. J.
Sears
,
J. Chem. Phys.
96
,
7218
(
1992
).
18.
M.
Wu
,
F. J.
Northrup
, and
T. J.
Sears
,
J. Chem. Phys.
97
,
4583
(
1992
).
19.
M.
Wu
and
T. J.
Sears
,
Mol. Phys.
82
,
503
(
1994
).
20.
V. E.
Bondybey
and
J. H.
English
,
J. Chem. Phys.
67
,
2868
(
1977
).
21.
T. R.
Charlton
,
T.
Okamura
, and
B. A.
Thrush
,
Chem. Phys. Lett.
89
,
98
(
1982
).
22.
K. N.
Wong
,
W. R.
Anderson
,
A. J.
Kotlar
, and
J. A.
Vanderhoff
,
J. Chem. Phys.
81
,
2970
(
1984
).
23.
R. A.
Copeland
and
D. R.
Crosley
,
Can. J. Phys.
62
,
1488
(
1984
).
24.
D. R.
Woodward
,
D. A.
Fletcher
, and
J. M.
Brown
,
Mol. Phys.
62
,
517
(
1987
).
25.
D.
Patel-Misra
,
D. G.
Sauder
, and
P. J.
Dagdigian
,
J. Chem. Phys.
93
,
5448
(
1990
).
26.
S. A.
Wright
and
P. J.
Dagdigian
,
J. Chem. Phys.
104
,
8279
(
1996
).
27.
J. L.
Yao
,
J. A.
Fernandez
, and
E. R.
Bernstein
,
J. Chem. Phys.
107
,
8813
(
1997
).
28.
R. E.
Continetti
,
D. R.
Cyr
,
D. L.
Osborn
,
D. J.
Leahy
, and
D. M.
Neumark
,
J. Chem. Phys.
99
,
2616
(
1993
).
29.
D. J.
Leahy
,
D. L.
Osborn
,
D. R.
Cyr
, and
D. M.
Neumark
,
J. Chem. Phys.
103
,
2495
(
1995
).
30.
D. L.
Osborn
,
H.
Choi
,
D. H.
Mordaunt
,
R. T.
Bise
,
D. M.
Neumark
, and
C. M.
Rohlfing
,
J. Chem. Phys.
106
,
3049
(
1997
).
31.
D. L.
Osborn
,
D. J.
Leahy
,
D. R.
Cyr
, and
D. M.
Neumark
,
J. Chem. Phys.
104
,
5026
(
1996
).
32.
J. M. B.
Bakker
,
J. Phys. E
7
,
364
(
1974
).
33.
J. M. B.
Bakker
,
J. Phys. E
6
,
785
(
1973
).
34.
S. E.
Bradforth
,
E. H.
Kim
,
D. W.
Arnold
, and
D. M.
Neumark
,
J. Chem. Phys.
98
,
800
(
1993
).
35.
D. P.
de Bruijn
and
J.
Los
,
Rev. Sci. Instrum.
53
,
1020
(
1982
).
36.
M. W. Chase and National Institute of Standards and Technology (U.S.), NIST-IANAF Thermochemical Tables, 4th ed. (American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology, Washington, D.C., 1998).
37.
Y. H.
Huang
,
S. A.
Barts
, and
J. B.
Halpern
,
J. Phys. Chem.
96
,
425
(
1992
).
38.
R. T.
Bise
,
H.
Choi
, and
D. M.
Neumark
,
J. Chem. Phys.
111
,
4923
(
1999
).
39.
R. T.
Bise
,
A. A.
Hoops
,
H.
Choi
, and
D. M.
Neumark
,
J. Chem. Phys.
113
,
4179
(
2000
).
40.
M.
Zyrianov
,
T. H.
DrozGeorget
, and
H.
Reisler
,
J. Chem. Phys.
106
,
7454
(
1997
).
41.
P.
Pechukas
and
J. C.
Light
,
J. Chem. Phys.
42
,
3281
(
1965
).
42.
P.
Pechukas
,
J. C.
Light
, and
C.
Rankin
,
J. Chem. Phys.
44
,
794
(
1966
).
43.
P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley–Interscience, New York, 1972).
44.
H.
Choi
,
R. T.
Bise
,
A. A.
Hoops
,
D. H.
Mordaunt
, and
D. M.
Neumark
,
J. Phys. Chem. A
104
,
2025
(
2000
).
45.
L.
Bonnet
and
J. C.
Rayez
,
Chem. Phys. Lett.
296
,
19
(
1998
).
46.
M. H. Alexander and H.-J. Werner (private communication).
47.
G.
Busch
and
K.
Wilson
,
J. Chem. Phys.
56
,
3626
(
1972
).
48.
H.
Levene
and
J.
Valentini
,
J. Chem. Phys.
87
,
2594
(
1987
).
49.
R.
Schinke
,
J. Chem. Phys.
85
,
5049
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.