Symmetry-adapted perturbation theory has been used to calculate the interaction energy for the N2HF van der Waals complex at two H–F separations corresponding to average values for vHF=0 and vHF=3 vibrational states and the N–N separation corresponding to vN2=0. The total of 228 and 197 grid points have been computed for the vHF=0 and vHF=3 case, respectively. A basis set containing 119 spdf-symmetry orbitals and including bond functions has been used. An analytical fit of the four-dimensional ab initio potential energy surface at the H–F separation corresponding to vHF=0 has a global minimum depth De of 762.4 cm−1 at the intermolecular separation R=6.73 bohr for the linear geometry with the H atom pointing towards the N2 molecule. The surface corresponding to the vHF=3 vibrational state has De of 897.9 cm−1 at R=6.71 bohr and the same orientation of HF relative to N2 as in the vHF=0 case. Exact quantum rovibrational calculations have been performed on both surfaces and the rotational constants and the lowest rovibrational frequencies of the complex have been compared to experimental data. The agreement between theory and experiment for vHF=0 potential is substantially better than achieved previously, while for the vHF=3 state our results constitute the first theoretical prediction.

1.
J. M.
Hutson
,
J. Chem. Phys.
96
,
6752
(
1992
).
2.
H.-C.
Chang
,
F.-M.
Tao
,
W.
Klemperer
,
C.
Healey
, and
J. M.
Hutson
,
J. Chem. Phys.
99
,
9337
(
1993
).
3.
H. C.
Chang
and
W.
Klemperer
,
J. Chem. Phys.
98
,
2497
(
1993
), and references therein.
4.
F.-M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
101
,
1129
(
1994
).
5.
V. F.
Lotrich
,
H. L.
Williams
,
K.
Szalewicz
,
B.
Jeziorski
,
R.
Moszynski
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
J. Chem. Phys.
103
,
6076
(
1995
).
6.
T.
van Mourik
and
T. H.
Dunning
,
J. Chem. Phys.
107
,
2451
(
1997
).
7.
M.
Jeziorska
,
P.
Jankowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
113
,
2957
(
2000
).
8.
P. D.
Soper
,
A. C.
Legon
,
W. G.
Read
, and
W. H.
Flygare
,
J. Chem. Phys.
76
,
292
(
1982
).
9.
K. W.
Jucks
,
Z. S.
Huang
, and
R. E.
Miller
,
J. Chem. Phys.
86
,
1098
(
1987
).
10.
C. M.
Lovejoy
and
D. J.
Nesbitt
,
J. Chem. Phys.
86
,
3151
(
1987
).
11.
S. N.
Tsang
,
H.-C.
Chang
, and
W.
Klemperer
,
J. Phys. Chem.
98
,
7313
(
1994
).
12.
S. N.
Tsang
,
C.-C.
Chuang
,
R.
Mollaaghababa
,
W.
Klemperer
, and
H.-C.
Chang
,
J. Chem. Phys.
105
,
4385
(
1996
).
13.
L.
Andrews
,
B. J.
Kelsall
, and
R. T.
Arlinghaus
,
J. Chem. Phys.
79
,
2488
(
1983
).
14.
L.
Andrews
and
P. F.
Souter
,
J. Chem. Phys.
111
,
5995
(
1999
).
15.
C.-C.
Chuang
,
S. N.
Tsang
,
W.
Klemperer
, and
H. C.
Chang
,
J. Chem. Phys.
109
,
8836
(
1998
).
16.
J. T.
Farrell
,
O.
Sneh
, and
D. J.
Nesbitt
,
J. Phys. Chem.
98
,
6068
(
1994
).
17.
R. J.
Bemish
,
E. J.
Bohac
,
M.
Wu
, and
R. E.
Miller
,
J. Chem. Phys.
101
,
9457
(
1994
).
18.
H.-C.
Chang
,
F.-M.
Tao
,
S. N.
Tsang
, and
W.
Klemperer
,
J. Chin. Chem. Soc. (Taipei)
42
,
141
(
1995
).
19.
C.-C.
Chuang
,
K. J.
Higgins
,
H. C.
Fu
, and
W.
Klemperer
,
J. Phys. Chem.
112
,
7022
(
2000
).
20.
D. E.
Woon
,
T. H.
Dunning
, Jr.
, and
K. A.
Peterson
,
J. Chem. Phys.
104
,
5883
(
1996
).
21.
G.
Chalasinski
and
M. M.
Szczesniak
,
Chem. Rev.
94
,
1723
(
1994
).
22.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
23.
S.
Drucker
,
F. M.
Tao
, and
W.
Klemperer
,
J. Phys. Chem.
99
,
2646
(
1995
).
24.
F. M.
Tao
,
S.
Drucker
,
R. C.
Cohen
, and
W.
Klemperer
,
J. Chem. Phys.
101
,
8680
(
1994
).
25.
F. M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
103
,
950
(
1995
).
26.
H. L.
Williams
,
E. M.
Mas
,
K.
Szalewicz
, and
B.
Jeziorski
,
J. Chem. Phys.
103
,
7374
(
1995
).
27.
E. M.
Mas
and
K.
Szalewicz
,
J. Chem. Phys.
104
,
7606
(
1996
).
28.
A.
Misquitta
,
R.
Bukowski
, and
K.
Szalewicz
,
J. Chem. Phys.
112
,
5308
(
2000
).
29.
E. M.
Mas
,
K.
Szalewicz
,
R.
Bukowski
, and
B.
Jeziorski
,
J. Chem. Phys.
107
,
4207
(
1997
).
30.
G. C.
Groenenboom
,
E. M.
Mas
,
R.
Bukowski
,
K.
Szalewicz
,
P. E. S.
Wormer
, and
A.
van der Avoird
,
Phys. Rev. Lett.
84
,
4072
(
2000
).
31.
P.
Jankowski
and
K.
Szalewicz
,
J. Chem. Phys.
108
,
3554
(
1998
).
32.
R.
Bukowski
,
J.
Sadlej
,
B.
Jeziorski
,
P.
Jankowski
,
K.
Szalewicz
,
S. A.
Kucharski
,
H. L.
Williams
, and
B. M.
Rice
,
J. Chem. Phys.
110
,
3785
(
1999
).
33.
J. M.
Hutson
,
A.
Ernesti
,
M. M.
Law
,
C. F.
Roche
, and
R. J.
Wheatley
,
J. Chem. Phys.
105
,
9130
(
1996
).
34.
A. R.
McKellar
,
J. Chem. Phys.
108
,
1811
(
1998
).
35.
E.
Zwart
,
J. J.
ter Meulen
,
W. L.
Meerts
, and
L. H.
Coudert
,
J. Mol. Spectrosc.
147
,
27
(
1991
).
36.
B. Jeziorski, R. Moszynski, A. Ratkiewicz, S. Rybak, K. Szalewicz, and H. L. Williams, in Methods and Techniques in Computational Chemistry: METECC94, Medium-Size Systems, Vol. B, edited by E. Clementi (STEF, Cagliari, 1993), p. 79.
37.
B.
Jeziorski
,
R.
Moszynski
, and
K.
Szalewicz
,
Chem. Rev.
94
,
1887
(
1994
), and references therein.
38.
K. Szalewicz and B. Jeziorski, Molecular Interactions—From van der Waals to Strongly Bound Complexes, edited by S. Scheiner (Wiley, New York, 1997), p. 3.
39.
B. Jeziorski and K. Szalewicz, in Encyclopedia of Computational Chemistry, edited by P. von Ragué Schleyer et al. (Wiley, Chichester, UK, 1998), Vol. 2, p. 1376.
40.
B.
Jeziorski
,
G.
Chalasinski
, and
K.
Szalewicz
,
Int. J. Quantum Chem.
14
,
271
(
1978
).
41.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
42.
M.
Jeziorska
,
B.
Jeziorski
, and
J.
Cizek
,
Int. J. Quantum Chem.
32
,
149
(
1987
).
43.
R.
Moszynski
,
B.
Jeziorski
,
A.
Ratkiewicz
, and
S.
Rybak
,
J. Chem. Phys.
99
,
8856
(
1993
);
R.
Moszynski
,
S. M.
Cybulski
, and
G.
Chalasinski
,
J. Chem. Phys.
100
,
4998
(
1994
).
44.
R. Bukowski, P. Jankowski, B. Jeziorski, M. Jeziorska, S. A. Kucharski, R. Moszynski, S. Rybak, K. Szalewicz, H. L. Williams, and P. E. S. Wormer, SAPT96: An ab initio program for many-body symmetry-adapted perturbation theory calculations of intermolecular interaction energies, University of Delaware and University of Warsaw.
45.
V. R. Saunders and M. F. Guest, ATMOL Program Package, SERC Daresbury Laboratory, Daresbury, Great Britain.
46.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
47.
W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (Wiley, New York, 1984), Chap. 13.
48.
J. F.
Ogilvie
,
J. Phys. B
21
,
1663
(
1988
).
49.
H.
Partridge
,
J. Chem. Phys.
87
,
6643
(
1987
);
NASA Technical Memorandum 89449;
H.
Partridge
,
J. Chem. Phys.
90
,
1043
(
1989
);
NASA Technical Memorandum 101044;
H.
Partridge
and
K.
Faegri
,Jr.
,
Theor. Chim. Acta
82
,
207
(
1992
);
NASA Technical Memorandum 103918.
50.
Gaussian 94, Revision D.2, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1995.
51.
A. J.
Sadlej
,
Collect. Czech. Chem. Commun.
53
,
1995
(
1988
).
52.
G. H. F.
Diercksen
and
A. J.
Sadlej
,
Mol. Phys.
57
,
509
(
1986
).
53.
K.
Szalewicz
,
S. J.
Cole
,
W.
Kolos
, and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3662
(
1988
).
54.
G. H. F.
Diercksen
and
A. J.
Sadlej
,
Theor. Chim. Acta
63
,
69
(
1983
).
55.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
).
56.
P. E. S.
Wormer
and
H.
Hettema
, Polcor Package, Nijmegen, 1992;
P. E. S.
Wormer
and
H.
Hettema
,
J. Chem. Phys.
97
,
5592
(
1992
).
57.
See EPAPS Document No. E-JCPSA6-114-308118 for supplemental materials.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubserver/epaps.html) or from ftp.aip.org in the directory/epaps/. See EPAPS homepage for more information.
58.
Requests for the FORTRAN subroutine evaluating the potential can be made to szalewic@udel.edu. This subroutine is also included in the Supplement.
59.
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
);
R. A.
Kendall
,
T. H.
Dunning
,Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
);
D. E.
Woon
and
T. H.
Dunning
,Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
);
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
60.
MOLPRO: programs written by H.-J. Werner and P. J. Knowles with contributions from J. Almlöf, R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, S. T. Elbert, C. Hampel, T. Leininger, R. Lindh, A. W. Lloyd, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, P. R. Taylor, M. Schütz, H. Stoll, A. J. Stone, and T. Thorsteinsson.
See also
R.
Lindh
,
U.
Ryu
, and
B.
Liu
,
J. Chem. Phys.
95
,
5889
(
1991
);
C.
Hampel
,
K.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
).
61.
A.
Halkier
,
W.
Klopper
,
T.
Helgaker
,
P.
Jo/rgensen
, and
P. R.
Taylor
,
J. Chem. Phys.
111
,
9157
(
1999
).
62.
J. M.
Hutson
,
Adv. Mol. Vib. Collision Dyn.
1
,
1
(
1991
).
63.
J. M. Hutson, BOUND computer code, version 5, 1993, distributed by Collaborative Computational Project no. 6 of the Science and Engineering Research Council, UK.
64.
S.
Green
,
J. Chem. Phys.
62
,
2271
(
1975
).
65.
E. S.
Fishburne
and
K. Narahari
Rao
,
J. Mol. Spectrosc.
19
,
290
(
1966
).
66.
M. D.
Marshall
,
P.
Jensen
, and
P. R.
Bunker
,
Chem. Phys. Lett.
176
,
255
(
1991
);
P.
Jensen
,
M. D.
Marshall
,
P. R.
Bunker
, and
A.
Karpfen
,
Chem. Phys. Lett.
180
,
594
(
1991
).
67.
P. Jankowski, M. Jeziorska, B. Jeziorski, and K. Szalewicz (unpublished).
68.
G.
Danby
,
J. Phys. B
16
,
3393
(
1983
).
69.
G. Herzberg, Molecular Spectra and Molecular Structure. II. Infrared and Raman Spectra of Polyatomic Molecules (Van Nostrand Reinhold, New York, 1945).
70.
D. J.
Nesbitt
,
T. G.
Lindeman
,
J. T.
Farrell
, and
C. M.
Lovejoy
,
J. Chem. Phys.
100
,
775
(
1994
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.