Ab initio molecular orbital calculations up to the coupled-cluster level with the aug-cc-pVQZ basis set allowed us to have a new look at the electron affinity of nitrous oxide (N2O) resulting in a detection of a new N2O entity, and thereby a novel mechanism for the dissociative electron attachment process, N2O+eN2+O. Addition of an electron to the linear N2O ground state (X 1Σ+) leads first to an open-chain bound anion which lies 25 kJ/mol above the neutral. Upon a cyclization of the open anion with an additional energy barrier of 25 kJ/mol, a cyclic anionic species is formed which is more stable than the open isomer and lies now, at most, 3 kJ/mol above the neutral ground state (the transition structure for cyclization being 50 kJ/mol above neutral N2O). The cyclic anionic species constitutes a weak complex between N2 and O characterized by a binding energy of only 16 kJ/mol. The electronic structure of the anion complex is analyzed, a number of earlier experimental results are clarified and a resolution for the long-standing disagreement between experiment and theory around the electron affinity of N2O is proposed.

1.
O. E.
Kashireninov
,
G. B.
Manelis
, and
R. F.
Repka
,
Russ. J. Phys. Chem.
56
,
630
(
1982
).
2.
J. W.
Cox
and
P. J.
Dagdigian
,
J. Phys. Chem.
86
,
3738
(
1982
).
3.
C. D.
Jonah
,
R. N.
Zare
, and
C.
Ottinger
,
J. Chem. Phys.
56
,
263
(
1972
).
4.
R. A.
Perry
and
J. A.
Miller
,
Int. J. Chem. Kinet.
28
,
217
(
1996
).
5.
W.
Seiler
and
R.
Conrad
,
J. Air Pollut. Control Assn.
31
,
767
(
1981
).
6.
D.
Ritter
and
J. C.
Weisshaar
,
J. Phys. Chem.
94
,
4907
(
1990
).
7.
J. M. J.
Plane
,
C. F.
Nien
, and
B.
Rajasekhar
,
J. Phys. Chem.
96
,
1296
(
1992
).
8.
D. P.
Belyung
,
P. M.
Futerko
, and
A.
Fontijn
,
J. Chem. Phys.
102
,
155
(
1995
).
9.
P.
Chantry
,
J. Chem. Phys.
51
,
3369
(
1969
);
P.
Chantry
,
J. Chem. Phys.
51
,
3380
(
1969
).
10.
G. J.
Schulz
,
J. Chem. Phys.
34
,
1778
(
1961
).
11.
W. E.
Wentworth
,
E.
Chen
, and
R.
Freeman
,
J. Chem. Phys.
55
,
2075
(
1971
).
12.
E. E.
Ferguson
,
F. C.
Fehsenfeld
, and
A. G.
Schmeltekopf
,
J. Chem. Phys.
47
,
3085
(
1967
).
13.
J. F.
Paulson
,
Adv. Chem. Ser.
58
,
28
(
1966
).
14.
F. C.
Fehsenfeld
,
E. E.
Ferguson
, and
A. L.
Schmeltekopf
,
J. Chem. Phys.
45
,
1844
(
1966
).
15.
J. N.
Bardsley
,
J. Chem. Phys.
51
,
3384
(
1969
).
16.
F.
Brüning
,
S.
Matejcik
,
I.
Illenberger
,
Y.
Chu
,
G.
Senn
,
D.
Muigg
,
G.
Denifl
, and
T. D.
Märk
,
Chem. Phys. Lett.
292
,
177
(
1998
).
17.
M. J.
Travers
,
D. C.
Cowles
, and
G. B.
Ellision
,
Chem. Phys. Lett.
164
,
449
(
1989
).
18.
G. A.
Janaway
and
J. A.
Brauman
,
J. Phys. Chem.
104
,
1795
(
2000
).
19.
E.
Leber
,
S.
Barsotti
,
J.
Bommels
,
J. M.
Weber
,
I. I.
Fabrikant
,
M.-W.
Ruf
, and
H.
Hotop
,
Chem. Phys. Lett.
325
,
345
(
2000
).
20.
Z.
Sojka
and
M.
Che
,
J. Phys. Chem.
100
,
14
776
(
1996
).
21.
S. J.
Nalley
,
R. N.
Compton
,
H. C.
Schweinler
, and
V. E.
Anderson
,
J. Chem. Phys.
59
,
4125
(
1973
), and references therein.
22.
CRC-Handbook of Chemistry and Physics, Web Edition 1999, 10–150.
23.
D. G.
Hopper
,
A. C.
Wahl
,
R. L. C.
Wu
, and
T. O.
Tiernan
,
J. Chem. Phys.
65
,
5474
(
1976
).
24.
D. R.
Yarkony
,
J. Chem. Phys.
78
,
6763
(
1983
).
25.
D.
Yu
,
A.
Rauk
, and
D. A.
Armstrong
,
J. Phys. Chem.
96
,
6013
(
1992
).
26.
G. S.
Tschumper
and
H. F.
Schaefer
,
J. Chem. Phys.
107
,
2529
(
1997
).
27.
M. C.
McCarthy
,
J. W. R.
Allington
, and
K. O.
Sullivan
,
Mol. Phys.
96
,
1735
(
1999
).
28.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
29.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
30.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrisson
,
J. Chem. Phys.
96
,
6796
(
1992
).
31.
M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., GAUSSIAN 94, Revision B.2, Gaussian, Inc., Pittsburgh, PA, 1995.
32.
D. Y.
Hwang
and
A. M.
Mebel
,
Chem. Phys.
259
,
89
(
2000
).
33.
D. M.
Neumark
,
K. R.
Lykke
,
T.
Anderson
, and
W. C.
Lineberger
,
Phys. Rev. A
32
,
1890
(
1985
).
34.
G.
De Oliveira
,
J. M. L.
Martin
,
F.
De Proft
, and
P.
Geerlings
,
Phys. Rev. A
60
,
1034
(
1999
).
35.
C. Moore, Atomic Energy Levels as Derived from the Analyses of Optical Spectra (NIST, Washington, 1971).
36.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data Suppl.
17
,
1
(
1988
).
37.
A. H. H.
Chang
and
D. R.
Yarkony
,
J. Chem. Phys.
99
,
6824
(
1993
).
38.
J. V.
Coe
,
J. T.
Snodgrass
,
C. B.
Freidhoff
,
K. M.
McHugh
, and
K. H.
Bowen
,
Chem. Phys. Lett.
124
,
274
(
1986
);
J. V.
Coe
,
J. T.
Snodgrass
,
C. B.
Freidhoff
,
K. M.
McHugh
, and
K. H.
Bowen
,
J. Chem. Phys.
87
,
4302
(
1987
).
39.
P.
Skurski
,
M.
Gutowski
, and
J.
Simons
,
Int. J. Quantum Chem.
76
,
197
(
2000
);
P.
Skurski
,
M.
Gutowski
, and
J.
Simons
,
Int. J. Quantum Chem.
80
,
1024
(
2000
).
40.
P.
Skurski
,
J.
Simons
,
X. B.
Wang
, and
L. S.
Wang
,
J. Am. Chem. Soc.
122
,
4499
(
2000
).
41.
F.
Bruning
,
S.
Matejcik
,
E.
Illenberger
,
Y.
Chu
,
G.
Senn
,
D.
Muigg
,
G.
Denifl
, and
T. D.
Mark
,
Chem. Phys. Lett.
292
,
177
(
1998
).
42.
R. L.
Schwartz
,
G. E.
Davico
,
T. M.
Ramont
, and
W. C.
Lineberger
,
J. Phys. Chem. A
103
,
8213
(
1999
).
43.
M.
Schwartz
and
P.
Marshall
,
J. Phys. Chem. A
103
,
7900
(
1999
).
44.
B.
Hajgato
,
H. M. T.
Nguyen
,
T.
Veszpremi
, and
M. T.
Nguyen
,
Phys. Chem. Chem. Phys.
2
,
5041
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.