Previously we have shown how to obtain the electric properties of a polymer or other periodic system at the coupled Hartree–Fock level by direct, analytical calculation rather than by extrapolation of oligomer results. Here we add computationally simpler noniterative formulas and test the methodology for the longitudinal dipole moment (μ), polarizability (α), first hyperpolarizability (β), and second hyperpolarizability (γ) of five quasilinear polymers: (LiH)n,(FH)n,(H2O)n, trans-polymethineimine (–CNH–)n, and trans-polyacetylene (–CH=CH–)n. The polymer values are in good agreement with large-oligomer calculations. In this connection the role of phase factors, particularly in determining the dipole moment, is elucidated. We are now in a good position to include electron correlation using methods analogous to those employed for molecular systems.

1.
D. M. Bishop and P. Norman, in Handbook of Advanced Electronic and Photonic Materials, Vol. 9, edited by H. S. Nalwa (Academic, San Diego, 2000), p. 1.
2.
B. Champagne and B. Kirtman, in Handbook of Advanced Electronic and Photonic Materials, Vol. 9, edited by H. S. Nalwa (Academic, San Diego, 2000), p. 63.
3.
C. E.
Dykstra
,
S.-Y.
Liu
, and
D. J.
Malik
,
Adv. Chem. Phys.
75
,
37
(
1989
).
4.
A. A.
Hasanein
,
Adv. Chem. Phys.
85
,
415
(
1993
).
5.
Optical Nonlinearities in Chemistry, Special Issue,
Chem. Rev.
94
,
1
-
278
(
1994
).
6.
Electronic and Nonlinear Optical Materials: Theory and Modeling, Special Issue,
J. Phys. Chem.
104
,
4671
(
2000
).
7.
D. M.
Bishop
,
Adv. Quantum Chem.
25
,
1
(
1994
).
8.
Y.
Luo
,
H.
Ågren
,
P.
Jørgensen
, and
K. V.
Mikkelsen
,
Adv. Quantum Chem.
26
,
165
(
1995
).
9.
S. P. Karna and A. T. Yeates (Eds.), Nonlinear Optical Materials, ACS Symposium Ser. 628 (American Chemical Society, Washington, 1996).
10.
B.
Kirtman
and
B.
Champagne
,
Int. Rev. Phys. Chem.
16
,
389
(
1997
).
11.
M.
Nakano
and
K.
Yamaguchi
,
Trends Chem. Phys.
5
,
87
(
1997
).
12.
Y.
Luo
,
D.
Jonsson
,
P.
Norman
,
K.
Ruud
,
O.
Vahtras
,
B.
Minaev
,
H.
Ågren
,
A.
Rizzo
, and
K. V.
Mikkelsen
,
Int. J. Quantum Chem.
70
,
219
(
1998
).
13.
D. M.
Bishop
,
Adv. Chem. Phys.
104
,
1
(
1998
).
14.
J. J.
Wolff
and
R.
Wortmann
,
Adv. Phys. Org. Chem.
32
,
121
(
1999
).
15.
B.
Kirtman
,
F. L.
Gu
, and
D. M.
Bishop
,
J. Chem. Phys.
113
,
1294
(
2000
).
16.
S. P.
Karna
and
M.
Dupuis
,
J. Comput. Chem.
12
,
487
(
1991
).
17.
P.
Otto
,
F. L.
Gu
, and
J.
Ladik
,
J. Chem. Phys.
110
,
2717
(
1999
).
18.
D.
Jacquemin
and
B.
Champagne
,
J. Chem. Phys.
112
,
1616
(
2000
).
19.
K. N.
Kudin
and
G. E.
Scuseria
,
J. Chem. Phys.
113
,
7779
(
2000
).
20.
R. D.
King-Smith
and
D.
Vanderbilt
,
Phys. Rev. B
47
,
1651
(
1993
).
21.
R.
Resta
,
Rev. Mod. Phys.
66
,
899
(
1994
).
22.
G.
Ortiz
and
R. M.
Martin
,
Phys. Rev. B
49
,
14202
(
1994
).
23.
P.
Otto
,
Phys. Rev. B
45
,
10876
(
1992
).
24.
J. M. André, D. H. Mosley, B. Champagne, J. Delhalle, J. G. Fripiat, J. L. Brédas, D. J. Vanderveken, and D. P. Vercauteren, in Methods and Techniques in Computational Chemistry: METECC-94, Vol. B, edited by E. Clementi (STEF, Cagliari, 1993), Chap. 10.
25.
F. L.
Gu
,
P.
Otto
, and
J.
Ladik
,
J. Mol. Model. [Electronic Publication]
3
,
182
(
1997
).
26.
B.
Champagne
,
D. H.
Mosley
, and
J. M.
André
,
Int. J. Quantum Chem., Symp.
27
,
667
(
1993
).
27.
D.
Jacquemin
,
B.
Champagne
, and
B.
Kirtman
,
J. Chem. Phys.
107
,
5076
(
1997
).
28.
I.
Gianolio
and
E.
Clementi
,
Gazz. Chim. Ital.
110
,
179
(
1980
).
29.
W. J.
Hehre
,
R. F.
Stewart
, and
J.
Pople
,
J. Chem. Phys.
51
,
2657
(
1969
).
30.
M. Dupuis, A. Marquez, and E. R. Davidson, “HONDO95.6,” (1995) IBM Corporation, Neighborhood Road, Kingston, NY, 12401.
31.
J. L.
Whitten
,
J. Chem. Phys.
44
,
359
(
1966
).
32.
P. Otto, Integral and HF CO Program Package, Institute for Theoretical Chemistry, Friedrich-Alexander University, Erlangen, Germany.
33.
F. L. Gu, PERIODIC Program Package, Department of Chemistry, University of Ottawa, Ottawa, Canada.
This content is only available via PDF.
You do not currently have access to this content.