Ground-state structures and vibrational frequencies are calculated for complexes of the nitrate anion with one and two water molecules at the ab initio Hartree–Fock level with a basis set including diffuse and polarization functions. Two local minimum geometries are found for each complex. Calculations of the electronically excited states at the CIS level are then used to find the forces on each of the atoms upon vertical excitation to the two lowest-lying (near-degenerate) strongly allowed electronic transitions. These forces are converted to gradients of the excited-state potential surfaces along the ground-state normal modes and compared with the parameters obtained previously from empirical simulations of the experimental resonance Raman intensities of NO3 in dilute aqueous solution. The calculations on two-water clusters agree well with the experimental excited-state geometry changes along the totally symmetric N–O stretch. The calculations underestimate the frequency splitting of the antisymmetric stretching vibration (degenerate in the isolated D3h ion) and the resonance Raman intensity in this mode, suggesting that bulk solvent polarization enhances the asymmetry of the local environment for NO3 in water. Comparison of the ground-state vibrational frequency splitting of the antisymmetric stretch with the corresponding values for the nitrate ion in salts having known crystal structures suggests that the rms difference among the three N–O bond lengths for nitrate anion in water probably exceeds 0.01 Å.

1.
A. E.
Johnson
and
A. B.
Myers
,
J. Phys. Chem.
100
,
7778
(
1996
).
2.
H.
Sato
,
F.
Hirata
, and
A. B.
Myers
,
J. Phys. Chem. A
102
,
2065
(
1998
).
3.
E.
Gershgoren
,
U.
Banin
, and
S.
Ruhman
,
J. Phys. Chem. A
102
,
9
(
1998
).
4.
M. R.
Waterland
and
A. M.
Kelley
,
J. Chem. Phys.
113
,
6760
(
2000
).
5.
D.
Danovich
,
J.
Hrusák
, and
S.
Shaik
,
Chem. Phys. Lett.
233
,
249
(
1995
).
6.
J. Vala, R. Kosloff, and J. N. Harvey (unpublished).
7.
J. A.
Friend
and
L. E.
Lyons
,
J. Chem. Soc.
1959
,
1572
(
1959
).
8.
L. E.
Harris
,
J. Chem. Phys.
58
,
5615
(
1973
).
9.
M. I.
McCarthy
,
K. A.
Peterson
, and
W. P.
Hess
,
J. Phys. Chem.
100
,
6708
(
1996
).
10.
N.
Lee
,
R. G.
Keesee
, and
A. W.
Castleman
, Jr.
,
J. Chem. Phys.
72
,
1089
(
1980
).
11.
J. M.
Howell
,
A. M.
Sapse
,
E.
Singman
, and
G.
Synder
,
J. Phys. Chem.
86
,
2345
(
1982
).
12.
M.
Shen
,
Y.
Xie
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
93
,
3379
(
1990
).
13.
A. B. Myers and R. A. Mathies, in Biological Applications of Raman Spectroscopy, edited by T. G. Spiro (Wiley, New York, 1987), Vol. 2, p. 1.
14.
A. B. Myers, in Laser Techniques in Chemistry, edited by A. B. Myers and T. R. Rizzo (Wiley, New York, 1995), p. 325.
15.
A. B.
Myers
,
Annu. Rev. Phys. Chem.
49
,
267
(
1998
).
16.
M.
Garavelli
,
F.
Negri
, and
M.
Olivucci
,
J. Am. Chem. Soc.
121
,
1023
(
1999
).
17.
R.
Kumble
,
T. S.
Rush
III
,
M. E.
Blackwood
, Jr.
,
P. M.
Kozlowski
, and
T. G.
Spiro
,
J. Phys. Chem. B
102
,
7280
(
1998
).
18.
V.
De Waele
,
G.
Buntinx
,
O.
Poizat
, and
J.-P.
Flament
,
J. Raman Spectrosc.
31
,
275
(
2000
).
19.
A. M.
Brouwer
and
R.
Wilbrandt
,
J. Phys. Chem.
100
,
9678
(
1996
).
20.
D. S.
Egolf
,
M. R.
Waterland
, and
A. M.
Kelley
,
J. Phys. Chem. B
104
,
10727
(
2000
).
21.
F.
Markel
,
N. S.
Ferris
,
I. R.
Gould
, and
A. B.
Myers
,
J. Am. Chem. Soc.
114
,
6208
(
1992
).
22.
J. R.
Holden
and
C. W.
Dickinson
,
J. Phys. Chem.
79
,
249
(
1975
).
23.
H.
Nowotny
and
G.
Heger
,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
C39
,
952
(
1983
).
24.
A.
Leclaire
and
J.-C.
Monier
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B33
,
1861
(
1977
).
25.
B. W.
Lucas
,
Acta Crystallogr., Sect. C: Cryst. Struct. Commun.
C39
,
1591
(
1983
).
26.
X.
Wu
,
F. R.
Fronczek
, and
L. G.
Butler
,
Inorg. Chem.
33
,
1363
(
1994
).
27.
A.
Braibanti
,
A.
Tiripicchio
,
A. M.
Manotti Lanfredi
, and
F.
Bigoli
,
Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.
B25
,
354
(
1969
).
28.
P.
Cherin
,
W. C.
Hamilton
, and
B.
Post
,
Acta Crystallogr.
23
,
455
(
1967
).
29.
B.
Ribár
,
N.
Milinski
,
Ž.
Budovalčev
, and
I.
Krstanović
,
Cryst. Struct. Commun.
9
,
203
(
1980
).
30.
A.
Ferrari
,
A.
Braibanti
,
A. M.
Manotti Lanfredi
, and
A.
Tiripicchio
,
Acta Crystallogr.
22
,
240
(
1967
).
31.
H. C.
Tang
and
B. H.
Torrie
,
J. Phys. Chem. Solids
38
,
125
(
1977
).
32.
R.
Birnstock
,
Z. Kristallogr.
124
,
310
(
1967
).
33.
L. M.
Markham
and
B. S.
Hudson
,
J. Phys. Chem.
100
,
2731
(
1996
).
34.
R. J.
Sension
,
R. J.
Brudzynski
,
B. S.
Hudson
,
J.
Zhang
, and
D. G.
Imre
,
Chem. Phys.
141
,
393
(
1990
).
35.
R. M.
Lynden-Bell
,
R.
Kosloff
,
S.
Ruhman
,
D.
Danovich
, and
J.
Vala
,
J. Chem. Phys.
109
,
9928
(
1998
).
36.
I.
Benjamin
,
P. F.
Barbara
,
B. J.
Gertner
, and
J. T.
Hynes
,
J. Phys. Chem.
99
,
7557
(
1995
).
37.
B. J.
Gertner
,
K.
Ando
,
R.
Bianco
, and
J. T.
Hynes
,
Chem. Phys.
183
,
309
(
1994
).
38.
P. K.
Walhout
,
J. C.
Alfano
,
K. A. M.
Thakur
, and
P. F.
Barbara
,
J. Phys. Chem.
99
,
7568
(
1995
).
39.
P. K.
Walhout
,
C.
Silva
, and
P. F.
Barbara
,
J. Phys. Chem.
100
,
5188
(
1996
).
40.
A.
Morita
and
S.
Kato
,
J. Chem. Phys.
109
,
5511
(
1998
).
41.
K. A.
Motakabbir
,
J.
Schnitker
, and
P. J.
Rossky
,
J. Chem. Phys.
90
,
6916
(
1989
).
42.
B. J.
Schwartz
and
P. J.
Rossky
,
Phys. Rev. Lett.
72
,
3282
(
1994
).
43.
R.
Ayala
,
J. M.
Martinez
,
R. R.
Pappalardo
, and
E. S.
Marcos
,
J. Phys. Chem. A
104
,
2799
(
2000
).
44.
G. H.
Peslherbe
,
B. M.
Ladanyi
, and
J. T.
Hynes
,
J. Phys. Chem. A
103
,
2561
(
1999
).
45.
EPAPS Document No. E-JCP5A6-114-002115 contains tables of the observed Raman frequencies and geometrical parameters of the nitrate salts, as well as the calculated vibrational frequencies and electronic excitations of the nitrate-water clusters.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubsers/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.