The performance of two recent ab initio computational thermochemistry schemes, W1 and W2 theory [J. M. L. Martin and G. de Oliveira, J. Chem. Phys. 111, 1843 (1999)], is assessed for an enlarged sample of thermochemical data consisting of the ionization potentials and electron affinities in the G2-1 and G2-2 sets, as well as the heats of formation in the G2-1 and a subset of the G2-2 set. We find W1 theory to be several times more accurate for ionization potentials and electron affinities than commonly used (and less expensive) computational thermochemistry schemes such as G2, G3, and CBS-QB3: W2 theory represents a slight improvement for electron affinities but no significant one for ionization potentials. The use of a two-point A+B/L5 rather than a three-point A+B/CL extrapolation for the self-consistent field (SCF) component greatly enhances the numerical stability of the W1 method for systems with slow basis set convergence. Inclusion of first-order spin–orbit coupling is essential for accurate ionization potentials and electron affinities involving degenerate electronic states: Inner-shell correlation is somewhat more important for ionization potentials than for electron affinities, while scalar relativistic effects are required for the highest accuracy. The mean deviation from experiment for the G2-1 heats of formation is within the average experimental uncertainty. W1 theory appears to be a valuable tool for obtaining benchmark quality proton affinities.

1.
J. A.
Pople
,
Angew. Chem. Int. Ed. Engl.
38
,
1894
(
1999
).
2.
J. A.
Pople
,
M.
Head-Gordon
,
D. J.
Fox
,
K.
Raghavachari
, and
L. A.
Curtiss
,
J. Chem. Phys.
90
,
5622
(
1989
);
L. A.
Curtiss
,
C.
Jones
,
G. W.
Trucks
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
93
,
2537
(
1990
).
3.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
4.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
5.
J. A.
Montgomery
Jr.
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
101
,
5900
(
1994
).
6.
J. W.
Ochterski
,
G. A.
Petersson
, and
J. A.
Montgomery
, Jr.
,
J. Chem. Phys.
104
,
2598
(
1996
).
7.
J. A.
Montgomery
, Jr.
,
M. J.
Frisch
,
J. W.
Ochterski
, and
G. A.
Petersson
,
J. Chem. Phys.
110
,
2822
(
1999
).
8.
J. M. L.
Martin
, and
G.
De Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
9.
J. M. L.
Martin
,
Chem. Phys. Lett.
310
,
271
(
1999
).
10.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
11.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
12.
A. D.
Becke
,
J. Chem. Phys.
107
,
8554
(
1997
).
13.
F. A.
Hamprecht
,
A. J.
Cohen
,
D. J.
Tozer
, and
N. C.
Handy
,
J. Chem. Phys.
109
,
6264
(
1998
).
14.
K. K. Irikura and D. J. Frurip, Computational Thermochemistry: Prediction and Estimation of Molecular Thermodynamics (American Chemical Society, Washington, DC, 1998).
15.
J. M. L. Martin, in Encyclopedia of Computational Chemistry, edited by P. von Ragué Schleyer (Wiley, Chichester, 1998).
16.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
17.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
42
(
1998
).
18.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
110
,
8384
(
1999
);
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
108
,
154
(
1998
).
19.
G. S.
Kedziora
,
J. A.
Pople
,
V. A.
Rassolov
,
M. A.
Ratner
,
P. C.
Redfern
, and
L. A.
Curtiss
,
J. Chem. Phys.
110
,
7123
(
1999
).
20.
L. A.
Curtiss
,
P. C.
Redfern
,
K.
Raghavachari
, and
J. A.
Pople
,
Chem. Phys. Lett.
313
,
600
(
1999
).
21.
A. B.
Baboul
,
L. A.
Curtiss
,
P. C.
Redfern
, and
K.
Raghavachari
,
J. Chem. Phys.
110
,
7650
(
1999
).
22.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
112
,
1125
(
2000
).
23.
C. W.
Bauschlicher
,Jr.
and
H.
Partridge
,
J. Chem. Phys.
103
,
1788
(
1995
);
C. W.
Bauschlicher
, Jr.
and
H.
Partridge
,
J. Chem. Phys.
105
,
4398
(
1996
).
24.
F.
De Proft
, and
P.
Geerlings
,
J. Chem. Phys.
106
,
3270
(
1997
).
25.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
B. B.
Stefanov
,
J. Chem. Phys.
108
,
692
(
1998
).
26.
J. F. Liebman, personal communication; Computational Chemistry Comparison and Benchmark DataBase, edited by R. D. Johnson, III, National Institute for Standards and Technology, Gaithersburg, Maryland, 2000. Website: http://srdata.nist.gov/cccbdb/
27.
GAUSSIAN 98, Rev. A. 7, M. J. Frisch, G. W. Trucks, H. B. Schlegel et al. (Gaussian, Inc., Pittsburgh, PA, 1998).
28.
J. M. L.
Martin
,
C. W.
Bauschlicher
, Jr.
, and
A.
Ricca
,
Comput. Phys. Commun.
133
,
189
(
2001
).
29.
MOLPRO is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, A. Berning et al.
30.
J. M. L. Martin and S. Parthiban, autoW1W2 (Weizmann Institute of Science, 2000). This driver is available on request from the authors.
31.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
32.
R. A.
Kendall
,
T. H.
Dunning
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
33.
T. H. Dunning, Jr., K. A. Peterson, and D. E. Woon, in Encyclopedia of Computational Chemistry, edited by P. von Ragué Schleyer (Wiley, Chichester, UK, 1998).
34.
C. W.
Bauschlicher
, Jr.
and
H.
Partridge
,
Chem. Phys. Lett.
240
,
533
(
1995
).
35.
J. M. L.
Martin
,
J. Chem. Phys.
108
,
2791
(
1998
).
36.
J. M. L.
Martin
and
O.
Uzan
,
Chem. Phys. Lett.
282
,
16
(
1998
).
37.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
38.
F.
Jensen
,
J. Chem. Phys.
110
,
6601
(
1999
);
F
,
Jensen
,
Theor. Chem. Acc.
104
,
484
(
2000
).
39.
J. M. L.
Martin
and
P. R.
Taylor
,
Mol. Phys.
96
,
681
(
1999
).
40.
C. Schwartz, in Methods in Computational Physics 2, edited by B. J. Alder (Academic, NewYork, 1963).
41.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
42.
W.
Kutzelnigg
and
J. D.
Morgan
,III
,
J. Chem. Phys.
96
,
4484
(
1992
);
W.
Kutzelnigg
and
J. D.
Morgan
, III
,
J. Chem. Phys.
97
,
8821
(
1992
).
43.
G. A.
Petersson
,
A.
Bennett
,
T. G.
Tensfeldt
,
M. A.
Al-Laham
,
W. A.
Shirley
, and
J.
Mantzaris
,
J. Chem. Phys.
89
,
2193
(
1988
).
44.
J. M. L.
Martin
and
P. R.
Taylor
,
J. Chem. Phys.
106
,
8620
(
1997
).
45.
G. D.
Purvis
, III
and
R. J.
Bartlett
,
J. Chem. Phys.
76
,
1910
(
1982
).
46.
A.
Halkier
,
T.
Helgaker
,
P.
Jo/rgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
,
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
47.
K. L.
Bak
,
P.
Jo/rgensen
,
J.
Olsen
,
T.
Helgaker
, and
W.
Klopper
,
J. Chem. Phys.
112
,
9229
(
2000
).
48.
M.
Schütz
,
R.
Lindh
, and
H.-J.
Werner
,
Mol. Phys.
96
,
719
(
1999
).
49.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
,
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
50.
W.
Klopper
,
J.
Noga
,
H.
Koch
, and
T.
Helgaker
,
Theor. Chem. Acc.
97
,
164
(
1997
).
51.
J. D.
Watts
,
J.
Gauss
,
R. J.
Bartlett
,
J. Chem. Phys.
98
,
8718
(
1993
).
52.
R. D.
Cowan
and
M.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
53.
R. L.
Martin
,
J. Phys. Chem.
87
,
750
(
1983
).
54.
R. J.
Gdanitz
and
R.
Ahlrichs
,
Chem. Phys. Lett.
143
,
413
(
1988
).
55.
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem. A
104
,
2281
(
2000
).
56.
J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA key values for thermodynamics (Hemisphere, New York, 1989); see also http://www.codata.org/codata/databases/key1.html
57.
J. M. L.
Martin
and
P. R.
Taylor
,
J. Phys. Chem. A
102
,
2995
(
1998
).
58.
C. W.
Bauschlicher
, Jr.
,
J. M. L.
Martin
, and
P. R.
Taylor
,
J. Phys. Chem.
103
,
7715
(
1999
).
59.
J. M. L.
Martin
, and
P.
Taylor
,
J. Phys. Chem.
103
,
4427
(
1999
).
60.
G.
de Oliveira
,
J. M. L.
Martin
,
F.
De Proft
, and
P.
Geerlings
,
Phys. Rev. A
60
,
1034
(
1999
).
61.
A.
Nicklass
,
K. A.
Peterson
,
A.
Berning
,
H.-J.
Werner
, and
P. J.
Knowles
,
J. Chem. Phys.
112
,
5624
(
2000
).
62.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
63.
D. W.
Schwenke
,
Spectrochim. Acta A
55
,
731
(
1999
).
64.
See EPAPS Document No. E-JCPSA6-114-303115 for Tables S-I through S-V to the present paper. This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
65.
M.
Reeves
and
E. R.
Davidson
,
J. Chem. Phys.
95
,
6551
(
1991
) and references therein.
66.
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
67.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
,
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
), and references therein.
68.
C.
Adamo
and
V.
Barone
,
J. Chem. Phys.
108
,
664
(
1998
).
69.
B. J.
Lynch
,
P. L.
Fast
,
M.
Harris
, and
D. G.
Truhlar
,
J. Phys. Chem. A
104
,
4811
(
2000
).
70.
A. D.
Becke
,
J. Chem. Phys.
98
,
1372
(
1993
).
71.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
A. D.
Becke
,
J. Chem. Phys.
88
,
2547
(
1988
).
72.
J.
Berkowitz
,
G. B.
Ellison
, and
D.
Gutman
,
J. Phys. Chem.
98
,
2744
(
1994
).
73.
J.
Berkowitz
,
W. A.
Chupka
, and
T. A.
Walter
,
J. Chem. Phys.
50
,
1497
(
1969
).
74.
K. A.
Peterson
,
J. Chem. Phys.
102
,
262
(
1995
);
see also
D. M.
Hirst
,
Mol. Phys.
82
,
359
(
1994
).
75.
M. L.
Leininger
,
C. D.
Sherrill
,
W. D.
Allen
, and
H. F.
Schaefer
, III
,
J. Chem. Phys.
108
,
6717
(
1998
).
76.
J. F.
Stanton
,
J.
Gauss
,
R. J.
Bartlett
,
T.
Helgaker
,
P.
Jo/rgensen
,
H. J. Aa.
Jensen
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
1211
(
1992
).
77.
J. M. L.
Martin
,
K. K.
Baldridge
, and
T. J.
Lee
,
Mol. Phys.
97
,
945
(
1999
).
78.
B. J.
Persson
,
P. R.
Taylor
, and
T. J.
Lee
,
J. Chem. Phys.
107
,
5051
(
1997
).
79.
J. M. L.
Martin
,
Chem. Phys. Lett.
273
,
98
(
1997
).
80.
R. S.
Grev
and
H. F.
Schaefer
,III
,
J. Chem. Phys.
97
,
8389
(
1992
);
C. L.
Collins
and
R. S.
Grev
,
J. Chem. Phys.
108
,
5465
(
1998
).
81.
S. R.
Gunn
and
L. G.
Green
,
J. Phys. Chem.
65
,
779
(
1967
).
82.
J. M. L.
Martin
,
K. K.
Baldridge
, and
T. J.
Lee
,
Mol. Phys.
97
,
945
(
1999
).
83.
D. A.
Dixon
,
D.
Feller
, and
G.
Sandrone
,
J. Phys. Chem. A
103
,
4744
(
1999
).
84.
E. P.
Hunter
and
S. G.
Lias
,
J. Phys. Chem. Ref. Data
27
,
413
(
1998
).
85.
H. Y. Afeefy, J. F. Liebman, and S. E. Stein, “Neutral Thermochemical Data” in NIST Chemistry WebBook, NIST Standard Reference Database Number 69, edited by W. G. Mallard and P. J. Linstrom, November 1998 (National Institute of Standards and Technology, Gaithersburg MD, 20899) (http://webbook.nist.gov/chemistry/).
86.
NIST-JANAF Thermochemical Tables, 4th Ed., edited by M. W. Chase, Jr., J. Phys. Chem. Ref. Data Monograph 9 (1998).
87.
Thermodynamic properties of individual substances, edited by L. V. Gurvich, I. V. Veyts, and C. B. Alcock, 4th Ed. (Hemisphere, New York, 1989).
88.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
(
1988
).
89.
Y.
Pak
and
R. C.
Woods
,
J. Chem. Phys.
106
,
6424
(
1997
).
90.
M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, and G. N. Roganov, Thermodynamics of Organic Compounds in the Gas State (Thermodynamics Research Center, College Station, TX, 1994).
91.
W. Tsang, in Energetics of Organic Free Radicals, edited by J. A. M. Simoes, A. Greenberg, and J. F. Liebman (Blackie Academic and Professional, London, 1996).
92.
J. B. Pedley, R. D. Naylor, and S. P. Kirby, Thermochemical Data of Organic Compounds, 2nd Ed. (Chapman and Hall, New York, 1986).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.