The motions involved in barrier crossing for protein folding are investigated in terms of the chain dynamics of the polymer backbone, completing the microscopic description of protein folding presented in the preceding paper. Local reaction coordinates are identified as collective growth modes of the unstable fluctuations about the saddle points in the free energy surface. The description of the chain dynamics incorporates internal friction (independent of the solvent viscosity) arising from the elementary isomerization of the backbone dihedral angles. We find that the folding rate depends linearly on the solvent friction for high viscosity, but saturates at low viscosity because of internal friction. For λ-repressor, the calculated folding rate prefactor, along with the free energy barrier from the variational theory, gives a folding rate that agrees well with the experimentally determined rate under highly stabilizing conditions, but the theory predicts too large a folding rate at the transition midpoint. This discrepancy obtained using a fairly complete quantitative theory inspires a new set of questions about chain dynamics, specifically detailed motions in individual contact formation.

1.
M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Oxford University Press, Oxford, 1986).
2.
R.
Zwanzig
,
J. Chem. Phys.
60
,
2717
(
1974
).
3.
M.
Bixon
and
R.
Zwanzig
,
J. Chem. Phys.
68
,
1896
(
1978
).
4.
S. E.
Jackson
,
Folding Des.
3
,
R81
(
1998
).
5.
L. S.
Itzhaki
,
D. E.
Otzen
, and
A. R.
Fersht
,
J. Mol. Biol.
254
,
260
(
1995
).
6.
I.
Lopez-Hernandez
and
L.
Serrano
,
Folding Des.
1
,
43
(
1996
).
7.
R. E.
Burton
,
G. S.
Huang
,
M. A.
Daugherty
,
T. L.
Calderone
, and
T. G.
Oas
,
Nat. Struct. Biol.
4
,
305
(
1997
).
8.
B.
Nölting
et al.,
Proc. Natl. Acad. Sci. U.S.A.
94
,
826
(
1997
).
9.
V. P.
Grantcharova
,
D. S.
Riddle
,
J. V.
Santiago
, and
D.
Baker
,
Nat. Struct. Biol.
5
,
714
(
1998
).
10.
J. C.
Martinez
,
M. T.
Pisabarro
, and
L.
Serrano
,
J. Mol. Biol.
5
,
721
(
1998
).
11.
B. A.
Shoemaker
,
J.
Wang
, and
P. G.
Wolynes
,
J. Mol. Biol.
287
,
675
(
1999
).
12.
J. J.
Portman
,
S.
Takada
, and
P. G.
Wolynes
,
Phys. Rev. Lett.
81
,
5237
(
1998
).
13.
O. V.
Galzitskaya
and
A. V.
Finkelstein
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
112999
(
1999
).
14.
E.
Alm
and
D.
Baker
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11305
(
1999
).
15.
V.
Muñoz
and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11311
(
1999
).
16.
V. I.
Abkevich
,
A. M.
Gutin
, and
E. I.
Shaknovich
,
Biochemistry
33
,
100026
(
1994
).
17.
J. N.
Onuchic
,
N. D.
Socci
,
Z. A.
Luthey-Schulten
, and
P. G.
Wolynes
,
Folding Des.
1
,
441
(
1996
).
18.
E. I.
Shakhnovich
,
Curr. Opin. Struct. Biol.
7
,
29
(
1997
).
19.
A. J.
Li
and
V.
Daggett
,
J. Mol. Biol.
257
,
412
(
1996
).
20.
D. K.
Klimov
and
D.
Thirumalai
,
J. Mol. Biol.
282
,
471
(
1998
).
21.
J.-E.
Shea
,
J. N.
Onuchic
, and
C. L.
Brooks
III
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
12512
(
1999
).
22.
V. S.
Pande
and
D. S.
Rokhsar
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
1273
(
1999
).
23.
J. D.
Bryngelson
and
P. G.
Wolynes
,
J. Phys. Chem.
93
,
6902
(
1989
).
24.
Z.
Guo
and
D.
Thirumalai
,
Biopolymers
36
,
83
(
1995
).
25.
S. J.
Hagen
,
J.
Hofrichter
,
A.
Szabo
, and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U.S.A.
93
,
11615
(
1996
).
26.
E.
Helfand
,
J. Chem. Phys.
54
,
4651
(
1971
).
27.
J.
Skolnick
and
E.
Helfand
,
J. Chem. Phys.
72
,
5489
(
1980
).
28.
E.
Helfand
and
J.
Skolnick
,
J. Chem. Phys.
77
,
5714
(
1982
).
29.
G.
Allegra
and
F.
Ganazzoli
,
J. Chem. Phys.
74
,
1310
(
1981
).
30.
A.
Perico
,
S.
Bisio
, and
C.
Cuniberti
,
Macromolecules
17
,
2686
(
1984
).
31.
A.
Perico
and
M.
Guenza
,
J. Chem. Phys.
84
,
510
(
1986
).
32.
A.
Perico
,
F.
Ganazzoli
, and
G.
Allegra
,
J. Chem. Phys.
87
,
3677
(
1987
).
33.
A.
Perico
,
Acc. Chem. Res.
22
,
336
(
1989
).
34.
A.
Perico
,
Biopolymers
28
,
1527
(
1989
).
35.
Y.
Hu
,
G. R.
Fleming
,
K. F.
Freed
, and
A.
Perico
,
Chem. Phys.
158
,
395
(
1991
).
36.
A.
Perico
,
N. E.
Moe
, and
M. D.
Ediger
,
J. Chem. Phys.
108
,
1245
(
1998
).
37.
W.
Kuhn
and
H.
Kuhn
,
Helv. Chim. Acta
29
,
609
(
1946
).
38.
R.
Cerf
,
J. Polym. Sci.
23
,
125
(
1957
).
39.
C. W.
Manke
and
M. C.
Williams
,
Macromolecules
18
,
2045
(
1985
).
40.
M.
Fixman
,
Faraday Discuss. Chem. Soc.
83
,
199
(
1987
).
41.
M.
Fixman
,
J. Chem. Phys.
89
,
2442
(
1988
).
42.
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornel University Press, Ithaca, 1979).
43.
S. A.
Adelman
and
K. F.
Freed
,
J. Chem. Phys.
67
,
1380
(
1977
).
44.
H. A.
Kramers
,
Physica (Utrecht)
7
,
284
(
1940
).
45.
A. M.
Berezhlovskii
,
E.
Pollak
, and
V. Y.
Zitserman
,
J. Chem. Phys.
97
,
2422
(
1992
).
46.
J. S.
Langer
,
Ann. Phys. (N.Y.)
54
,
258
(
1969
).
47.
D. W. Oxtoby, in Liquids, Freezing and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991), pp. 149–191.
48.
S.
Takada
and
P. G.
Wolynes
,
Phys. Rev. E
55
,
4562
(
1997
).
49.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
(
1980
).
50.
J. S.
Langer
and
L. A.
Turski
,
Phys. Rev. A
8
,
3230
(
1973
).
51.
D. F.
Calef
and
P. G.
Wolynes
,
J. Chem. Phys.
78
,
470
(
1983
).
52.
R. Zwanzig, in Lectures in Theoretical Physics (Wiley, New York, 1961), Vol. 3, pp. 106–141.
53.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
).
54.
A.
Perico
,
R.
Pratolongo
,
K. F.
Freed
,
R. W.
Pastor
, and
A.
Szabo
,
J. Chem. Phys.
98
,
564
(
1993
).
55.
P.
Grigolini
,
Adv. Chem. Phys.
62
,
1
(
1985
).
56.
Y.
Hu
et al.,
J. Chem. Phys.
93
,
822
(
1990
).
57.
X. Y.
Chang
and
K. F.
Freed
,
J. Chem. Phys.
99
,
8016
(
1993
).
58.
W. H.
Tang
,
X. Y.
Chang
, and
K. F.
Freed
,
J. Chem. Phys.
103
,
9492
(
1995
).
59.
K. S.
Kostov
and
K. F.
Freed
,
J. Chem. Phys.
106
,
771
(
1997
).
60.
A.
Perico
and
R.
Pratolongo
,
Macromolecules
30
,
5958
(
1997
).
61.
S.
Fausti
,
G. L.
Penna
,
C.
Cuniberi
, and
A.
Perico
,
Biopolymers
50
,
613
(
1999
).
62.
G. L.
Penna
,
R.
Pratolongo
, and
A.
Perico
,
Macromolecules
32
,
506
(
1999
).
63.
H. Risken, The Fokker-Plank Equation, 2nd ed. (Springer-Verlag, Berlin, 1989).
64.
H. Yamakawa, Modern Theory of Polymer Solutions (Harper & Row, New York, 1971).
65.
As in paper I, the sequence index begins with the first residue of the fast folding double mutant (G46A/G48A) of λ6–85 (Ref. 77). The helices roughly correspond to the sequence indices H1(3–21), H2(27–36), H3(38–47), H4(53–65), H5(72–80) as determined by the DSSP algorithm (Ref. 105) applied to the PDB structure (Ref. 106).
66.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
60
,
866
(
1973
).
67.
G.
Wilemski
and
M.
Fixman
,
J. Chem. Phys.
60
,
878
(
1973
).
68.
M.
Doi
,
Chem. Phys.
9
,
455
(
1975
).
69.
G.
Allegra
,
J. Chem. Phys.
84
,
5881
(
1986
).
70.
E. R.
Bazúa
and
M. C.
Williams
,
J. Chem. Phys.
59
,
2858
(
1973
).
71.
C. W.
Manke
and
M. C.
Williams
,
J. Rheol.
33
,
949
(
1989
).
72.
R.
Du
,
V. S.
Pande
,
A. Y.
Grossberg
,
T.
Tanaka
, and
E. S.
Shakhnovich
,
J. Chem. Phys.
108
,
334
(
1998
).
73.
C.
Wagner
and
T.
Kiefhaber
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
6716
(
1999
).
74.
N. D.
Socci
,
J. N.
Onuchic
, and
P. G.
Wolynes
,
J. Chem. Phys.
104
,
5860
(
1996
).
75.
T. E. Creighton, Proteins: Structures and Molecular Properties, 2nd ed. (W. H. Freeman, New York, 1993).
76.
P. G.
Bolhuis
,
C.
Dellago
, and
D.
Chandler
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
5877
(
2000
).
77.
R. E.
Burton
,
G. S.
Huang
,
M. A.
Daugherty
,
P. W.
Fullbright
, and
T. G.
Oas
,
J. Mol. Biol.
263
,
311
(
1996
).
78.
J. D.
Bryngelson
,
J. N.
Onuchic
,
N. D.
Socci
, and
P. G.
Wolynes
,
Proteins: Struct., Funct., Genet.
21
,
167
(
1995
).
79.
J.
Sabelko
,
J.
Ervin
, and
M.
Gruebele
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
6063
(
1999
).
80.
M.
Jacob
,
T.
Schindler
,
J.
Balbach
, and
F. X.
Schmid
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
5622
(
1997
).
81.
K. W.
Plaxco
and
D.
Baker
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
13591
(
1998
).
82.
M.
Jacob
and
F. X.
Schmid
,
Biochemistry
38
,
13773
(
1999
).
83.
D. K.
Klimov
and
D.
Thirumalai
,
Phys. Rev. Lett.
79
,
317
(
1997
).
84.
M. P. Eastwood and P. G. Wolynes, J. Chem. Phys. (in press).
85.
S.
Takada
,
J. J.
Portman
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
2318
(
1997
).
86.
J.-R.
Roan
and
E. I.
Shakhnovich
,
Phys. Rev. E
54
,
5340
(
1996
).
87.
D.
Thirumalai
,
V.
Ashwin
, and
J. K.
Bhattacharjee
,
Phys. Rev. Lett.
77
,
5385
(
1996
).
88.
E. G.
Timoshenko
,
Y. A.
Kuznetsov
, and
K. A.
Dawson
,
Phys. Rev. E
54
,
4071
(
1996
).
89.
N.
Hillson
,
J. N.
Onuchic
, and
A. E.
Garcia
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
14848
(
1999
).
90.
D. S.
Gottfried
and
E.
Haas
,
Biochemistry
31
,
12353
(
1992
).
91.
E.
Haas
,
IEEE J. Quantum Electron.
2
,
1088
(
1996
).
92.
Y.
Jia
et al.,
Chem. Phys.
247
,
69
(
1999
).
93.
A. A.
Deniz
et al.,
Proc. Natl. Acad. Sci. U.S.A.
97
,
5179
(
2000
).
94.
E.
Haas
,
E.
Katchalski-Katzir
, and
I. Z.
Steinberg
,
Biopolymers
17
,
11
(
1978
).
95.
O.
Bieri
et al.,
Proc. Natl. Acad. Sci. U.S.A.
96
,
9597
(
1999
).
96.
L. J.
Lapidus
,
W. A.
Eaton
, and
J.
Hofrichter
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
7220
(
1999
).
97.
K.
Schulten
,
Z.
Schulten
, and
A.
Szabo
,
J. Chem. Phys.
74
,
4426
(
1981
).
98.
R. W.
Pastor
,
R.
Zwanzig
, and
A.
Szabo
,
J. Chem. Phys.
105
,
3878
(
1996
).
99.
J. J. Portman and P. G. Wolynes (unpublished).
100.
In the dumbell model, the normalized correlations of the end to end vector rn1=rnr1 are approximated to have a single decay constant φ(t)=exp[−t/τeff] where τeff−1=3Deff/〈rn12〉. The effective diffusion coefficient can be identified by comparing the short time expansions of φ(t) and the corresponding multiexponential relaxation from Eq. (54), resulting in Deff=D0Σp(Qpn−Qp1)2p. For no internal friction I=0),Q=QR are Rouse modes and νp=1, allowing explicit summation over the modes with the result Deff=2D0. In general, Deff depends on the internal friction.
101.
A. R.
Fersht
,
A.
Matouschek
, and
L.
Serrano
,
J. Mol. Biol.
224
,
771
(
1992
).
102.
M. W.
Nowak
et al.,
Methods Enzymol.
293
,
504
(
1998
).
103.
D. S.
Riddle
et al.,
Nat. Struct. Biol.
6
,
1016
(
1999
).
104.
V. P.
Grantcharova
,
D. S.
Riddle
, and
D.
Baker
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
7084
(
2000
).
105.
W.
Kabsch
and
C.
Sander
,
Biopolymers
22
,
2577
(
1983
).
106.
L. J.
Beamer
and
C. O.
Pabo
,
J. Mol. Biol.
227
,
177
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.