A microscopic theory of the free energy barriers and folding routes for minimally frustrated proteins is presented, greatly expanding on the presentation of the variational approach outlined previously [J. J. Portman, S. Takada, and P. G. Wolynes, Phys. Rev. Lett. 81, 5237 (1998)]. We choose the λ-repressor protein as an illustrative example and focus on how the polymer chain statistics influence free energy profiles and partially ordered ensembles of structures. In particular, we investigate the role of chain stiffness on the free energy profile and folding routes. We evaluate the applicability of simpler approximations in which the conformations of the protein molecule along the folding route are restricted to have residues that are either entirely folded or unfolded in contiguous stretches. We find that the folding routes obtained from only one contiguous folded region corresponds to a chain with a much greater persistence length than appropriate for natural protein chains, while the folding route obtained from two contiguous folded regions is able to capture the relatively folded regions calculated within the variational approach. The free energy profiles obtained from the contiguous sequence approximations have larger barriers than the more microscopic variational theory which is understood as a consequence of partial ordering.

1.
J. D.
Bryngelson
and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
84
,
7524
(
1987
).
2.
J. D.
Bryngelson
and
P. G.
Wolynes
,
J. Phys. Chem.
93
,
6902
(
1989
).
3.
J. D.
Bryngelson
,
J. N.
Onuchic
,
N. D.
Socci
, and
P. G.
Wolynes
,
Proteins: Struct., Funct., Genet.
21
,
167
(
1995
).
4.
D.
Thirumalai
,
V.
Ashwin
, and
J. K.
Bhattacharjee
,
Phys. Rev. Lett.
77
,
5385
(
1996
).
5.
E. G.
Timoshenko
,
Y. A.
Kuznetsov
, and
K. A.
Dawson
,
Phys. Rev. E
54
,
4071
(
1996
).
6.
S.
Takada
,
J. J.
Portman
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
2318
(
1997
).
7.
P. E.
Leopold
,
M.
Montal
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U.S.A.
89
,
8721
(
1992
).
8.
J. N.
Onuchic
,
P. G.
Wolynes
,
N. D.
Socci
, and
Z. A.
Luthey-Schulten
,
Proc. Natl. Acad. Sci. U.S.A.
92
,
3626
(
1995
).
9.
H.
Nymeyer
,
A. E.
Garcia
, and
J. N.
Onuchic
,
Proc. Natl. Acad. Sci. U.S.A.
95
,
5921
(
1998
).
10.
J.-E.
Shea
,
J. N.
Onuchic
, and
C. L.
Brooks
III
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
12512
(
1999
).
11.
C.
Hardin
,
Z.
Luthey-Schulten
, and
P. G.
Wolynes
,
Proteins: Struct., Funct., Genet.
34
,
281
(
1999
).
12.
V. S.
Pande
and
D. S.
Rokhsar
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
1273
(
1999
).
13.
M.
Sasai
and
P. G.
Wolynes
,
Phys. Rev. A
46
,
7979
(
1992
).
14.
S.
Takada
and
P. G.
Wolynes
,
Phys. Rev. E
55
,
4562
(
1997
).
15.
S.
Takada
and
P. G.
Wolynes
,
J. Chem. Phys.
107
,
9585
(
1997
).
16.
J. J.
Portman
,
S.
Takada
, and
P. G.
Wolynes
,
Phys. Rev. Lett.
81
,
5237
(
1998
).
17.
J. J.
Portman
,
S.
Takada
, and
P. G.
Wolynes
,
J. Chem. Phys.
114
,
5082
(
2001
), following paper.
18.
P. L.
Privalov
,
Adv. Protein Chem.
33
,
167
(
1979
).
19.
H.
Frauenfelder
,
G. A.
Petsko
, and
D.
Tsernoglou
,
Nature (London)
280
,
558
(
1979
).
20.
D. W. Oxtoby, in Liquids, Freezing and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991), p. 149–191.
21.
R. E.
Burton
,
G. S.
Huang
,
M. A.
Daugherty
,
P. W.
Fullbright
, and
T. G.
Oas
,
J. Mol. Biol.
263
,
311
(
1996
).
22.
R. E.
Burton
,
G. S.
Huang
,
M. A.
Daugherty
,
T. L.
Calderone
, and
T. G.
Oas
,
Nat. Struct. Biol.
4
,
305
(
1997
).
23.
P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley, New York, 1969).
24.
M.
Bixon
and
R.
Zwanzig
,
J. Chem. Phys.
68
,
1896
(
1978
).
25.
D. Thirumalai and B. Y. Ha, in Theoretical and Mathematical Models in Polymer Research, edited by A. Y. Grossberg (Academic, Boston, 1998), pp. 1–35.
26.
A.
Perico
,
Biopolymers
28
,
1527
(
1989
).
27.
A.
Perico
,
F.
Ganazzoli
, and
G.
Allegra
,
J. Chem. Phys.
87
,
3677
(
1987
).
28.
A.
Perico
,
Acc. Chem. Res.
22
,
336
(
1989
).
29.
Y.
Hu
,
G. R.
Fleming
,
K. F.
Freed
, and
A.
Perico
,
Chem. Phys.
158
,
395
(
1991
).
30.
A.
Perico
,
N. E.
Moe
, and
M. D.
Ediger
,
J. Chem. Phys.
108
,
1245
(
1998
).
31.
H. Yamakawa, Helical Wormlike Chains in Polymer Solutions (Springer-Verlag, Berlin, 1997).
32.
C. R. Cantor and P. R. Schimmel, Biophysical Chemistry (W. H. Freeman, New York, 1980), Vol. 3.
33.
P. J.
Flory
,
Proc. R. Soc. London A
351
,
351
(
1976
).
34.
M. P.
Solf
and
T. A.
Vilgis
,
J. Phys. A
28
,
6655
(
1995
).
35.
J. D.
Bryngelson
and
D.
Thirumalai
,
Phys. Rev. Lett.
76
,
542
(
1996
).
36.
M. P.
Solf
and
T. A.
Vilgis
,
Phys. Rev. Lett.
77
,
4276
(
1996
).
37.
R.
Zwanzig
,
J. Chem. Phys.
106
,
2824
(
1996
).
38.
T. A.
Vilgis
,
Macromol. Theory Simul.
7
,
59
(
1998
).
39.
M. P.
Solf
and
T. A.
Vilgis
,
Phys. Rev. E
55
,
3037
(
1997
).
40.
I.
Bahar
,
A. R.
Atilgan
, and
B.
Erman
,
Folding Des.
2
,
173
(
1997
).
41.
I.
Bahar
,
A. R.
Atilgan
,
M. C.
Demirel
, and
B.
Erman
,
Phys. Rev. Lett.
80
,
2733
(
1998
).
42.
I.
Bahar
,
A.
Wallqvist
, and
D. B.
Covell
,
Biochemistry
37
,
1067
(
1998
).
43.
B.
Erman
and
K. A.
Dill
,
J. Chem. Phys.
112
,
1050
(
2000
).
44.
B. A.
Shoemaker
,
J.
Wang
, and
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
777
(
1997
).
45.
B. A.
Shoemaker
,
J.
Wang
, and
P. G.
Wolynes
,
J. Mol. Biol.
287
,
675
(
1999
).
46.
O. V.
Galzitskaya
and
A. V.
Finkelstein
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
112999
(
1999
).
47.
E.
Alm
and
D.
Baker
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11305
(
1999
).
48.
V.
Muñoz
and
W. A.
Eaton
,
Proc. Natl. Acad. Sci. U.S.A.
96
,
11311
(
1999
).
49.
H. S.
Chan
and
K. A.
Dill
,
J. Chem. Phys.
90
,
492
(
1990
).
50.
H. S.
Chan
and
K. A.
Dill
,
J. Chem. Phys.
92
,
3118
(
1990
).
51.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, Oxford, 1989).
52.
D. J.
Wales
,
J. Chem. Phys.
101
,
3750
(
1994
).
53.
Throughout this section, the sequence index begins with the first residue of the fast folding double mutant (G46A/G48A) of λ6–85 (Ref. 21). The helices roughly correspond to the sequence indices H1(3–21), H2(27–36), H3(38–47), H4(53–65), H5(72–80) as determined by the DSSP algorithm (Ref. 55) applied to the PDB structure (Ref. 54).
54.
L. J.
Beamer
and
C. O.
Pabo
,
J. Mol. Biol.
227
,
177
(
1992
).
55.
W.
Kabsch
and
C.
Sander
,
Biopolymers
22
,
2577
(
1983
).
56.
S.
Miyazawa
and
R. L.
Jernigan
,
J. Mol. Biol.
256
,
623
(
1996
).
57.
As rough estimate of RG with no confinement B=0, the asymptotic expression (Ref. 23) RG2/(n−1)a2∼(1/6)(1+g)/(1−g) gives RG≈20a for a free chain of length n=80 and persistence length l=20a(g=0.95).
58.
The reported values for the persistence length are determined through characteristic ratio defined as C=limn→∞〈(rnr1)2〉/na2 (see Refs. 23 and 32). For an infinite freely rotating chain with chain stiffness g, C=(1+g)/(1−g); using l=a/(1−g) gives l=(C+1)a/2.
59.
M.
Silow
and
M.
Oliveberg
,
J. Mol. Biol.
269
,
611
(
1997
).
60.
S. S.
Plotkin
,
J.
Wang
, and
P. G.
Wolynes
,
Phys. Rev. E
53
,
6271
(
1996
).
61.
The configurations in the contiguous sequence approximations are specified by the constraint parameters {Ci}: if the ith residue is fully folded (unfolded), Ci is set to the value of the corresponding constraint at the native (globule) minimum.
62.
M. P. Eastwood and P. G. Wolynes, J. Chem. Phys. (in press).
63.
P. G.
Wolynes
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
6170
(
1997
).
64.
A. R.
Fersht
,
A.
Matouschek
, and
L.
Serrano
,
J. Mol. Biol.
224
,
771
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.