Time evolution of the coherence properties of excitons in J-aggregates of an organic molecule is studied by femtosecond transient absorption and three-pulse stimulated photon echo peak shifts. The exciton energy correlation function decays to zero by 120 fs single exponential, manifesting an ultrafast rupture of the coherent wave packet motion and the absence of inhomogeneity beyond the 100 fs time scale. Insensitivity of the correlation function to the isotopic substitution of the solvent suggests that the phonon modes of the molecular chain are responsible for the ultrafast dynamics.

1.
G.
Lanzani
,
S. V.
Frolov
,
P. A.
Lane
,
Z. V.
Vardeny
,
M.
Nisoli
, and
S.
De Silvestri
,
Phys. Rev. Lett.
79
,
3066
(
1997
).
2.
M.
Chachisvilis
,
O.
Kühn
,
T.
Pullerits
, and
V.
Sundström
,
J. Phys. Chem. B
101
,
7275
(
1997
).
3.
S. E.
Bradforth
,
R.
Jimenez
,
F.
van Mourik
,
R.
van Grondelle
, and
G. R.
Fleming
,
J. Phys. Chem.
99
,
16179
(
1995
);
R.
Jimenez
,
F.
van Mourik
,
J. Y.
Yu
, and
G. R.
Fleming
,
J. Phys. Chem. B
101
,
7350
(
1997
).
4.
M.
Gurioli
,
F.
Bogani
,
S.
Ceccherini
, and
M.
Colocci
,
Phys. Rev. Lett.
78
,
3205
(
1997
).
5.
M.
Woerner
and
J.
Shah
,
Phys. Rev. Lett.
81
,
4208
(
1998
).
6.
W.
Langbein
,
J. M.
Hvam
, and
R.
Zimmermann
,
Phys. Rev. Lett.
82
,
1040
(
1997
).
7.
G.
Scheibe
,
Angew. Chem.
49
,
563
(
1936
).
8.
E. E.
Jelley
,
Nature (London)
138
,
1009
(
1936
).
9.
R.
Hirschmann
and
J.
Friedrich
,
J. Chem. Phys.
91
,
7988
(
1989
);
R.
Hirschmann
and
J.
Friedrich
,
J. Opt. Soc. Am. B
9
,
811
(
1992
).
10.
S.
de Boer
and
D. A.
Wiersma
,
Chem. Phys. Lett.
165
,
45
(
1990
).
11.
H.
Fidder
and
D. A.
Wiersma
,
Phys. Rev. Lett.
66
,
1501
(
1991
).
12.
F. C.
Spano
and
S.
Mukamel
,
J. Chem. Phys.
91
,
683
(
1989
).
13.
H.
Fidder
,
J.
Knoester
, and
D. A.
Wiersma
,
J. Chem. Phys.
95
,
7880
(
1991
).
14.
V. M. Kenkre, Exciton Dynamics in Molecular Crystals and Aggregates (Springer-Verlag, Berlin, 1982).
15.
V.
Sundström
,
T.
Gillbro
,
R. A.
Gadonas
, and
A.
Piskarskas
,
J. Chem. Phys.
89
,
2754
(
1988
).
16.
M.
van Burgel
,
D. A.
Wiersma
, and
K.
Duppen
,
J. Chem. Phys.
102
,
20
(
1995
).
17.
R.
Gagel
,
R.
Gadonas
, and
A.
Laubereau
,
Chem. Phys. Lett.
217
,
228
(
1994
).
18.
K.
Misawa
and
T.
Kobayashi
,
J. Chem. Phys.
110
,
5844
(
1999
).
19.
S.-H.
Lee
,
J.-H.
Lee
, and
T.
Joo
,
J. Chem. Phys.
110
,
10969
(
1999
).
20.
F.
Rotermund
,
R.
Weigand
, and
A.
Penzkofer
,
Chem. Phys.
220
,
385
(
1997
).
21.
T.
Joo
,
Y.
Jia
,
J.-Y.
Yu
,
M. J.
Lang
, and
G. R.
Fleming
,
J. Chem. Phys.
104
,
6089
(
1996
).
22.
T.
Joo
and
A. C.
Albrecht
,
Chem. Phys.
176
,
233
(
1993
).
23.
G. R.
Fleming
,
T.
Joo
, and
M.
Cho
,
Adv. Chem. Phys.
101
,
141
(
1997
).
24.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
253
,
53
(
1996
);
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
J. Phys. Chem.
100
,
11806
(
1996
).
25.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Annu. Rev. Phys. Chem.
49
,
99
(
1998
).
26.
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
107
,
8759
(
1997
);
W. M.
Zhang
,
T.
Meier
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
108
,
7763
(
1998
).
27.
M.
Yang
and
G. R.
Fleming
,
J. Chem. Phys.
111
,
27
(
1999
).
28.
E. W.
Knapp
,
Chem. Phys.
85
,
73
(
1984
).
29.
J.
Knoester
,
J. Chem. Phys.
99
,
8466
(
1993
).
30.
J.
Moll
,
S.
Daehne
,
J. R.
Durrant
, and
D. A.
Wiersma
,
J. Chem. Phys.
102
,
6362
(
1995
).
31.
D. A.
Higgins
and
P. F.
Barbara
,
J. Phys. Chem.
99
,
3
(
1995
).
32.
K.
Mizoguchi
,
Y.
Hori
, and
Y.
Tominaga
,
J. Chem. Phys.
97
,
1961
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.