The forward–backward semiclassical dynamics methodology [J. Phys. Chem. 103, 7753, 9479 (1999)] is reformulated in the interaction representation. The new version of the method allows for a fully quantum mechanical description of a low-dimensional subsystem of interest, along with a semiclassical forward–backward treatment of the solvent coordinates and their coupling to the reference subsystem. Application to the long-time tunneling dynamics in a symmetric double-well system coupled to a harmonic bath shows that the interaction FBSD is capable of capturing quantitatively the tunneling and decoherence effects induced by weakly dissipative environments.

1.
J. H.
Van Vleck
,
Proc. Natl. Acad. Sci. USA
14
,
178
(
1928
).
2.
C.
Morette
,
Phys. Rev.
81
,
848
(
1952
).
3.
R. P.
Feynman
,
Rev. Mod. Phys.
20
,
367
(
1948
).
4.
S.
Tomsovic
and
E. J.
Heller
,
Phys. Rev. Lett.
67
,
664
(
1991
).
5.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
6.
W. H.
Miller
,
Adv. Chem. Phys.
30
,
77
(
1975
).
7.
M. S. Child, Semiclassical Mechanics with Molecular Applications (Clarendon, Oxford, 1991).
8.
M. A.
Sepulveda
,
S.
Tomsovic
, and
E. J.
Heller
,
Phys. Rev. Lett.
69
,
402
(
1992
).
9.
M. F.
Herman
,
Annu. Rev. Phys. Chem.
45
,
83
(
1994
).
10.
M. A.
Sepulveda
and
F.
Grossmann
,
Adv. Chem. Phys.
XCVI
,
191
(
1996
).
11.
S.
Garashchuk
,
F.
Grossmann
, and
D.
Tannor
,
J. Chem. Soc., Faraday Trans.
93
,
781
(
1997
).
12.
F.
Grossmann
,
Phys. Rev. A
60
,
1791
(
1999
).
13.
K.
Kay
,
J. Chem. Phys.
107
,
2313
(
1997
).
14.
W. H.
Miller
,
J. Chem. Phys.
95
,
9428
(
1991
).
15.
E. J.
Heller
,
J. Chem. Phys.
94
,
2723
(
1991
).
16.
E. J.
Heller
,
J. Chem. Phys.
95
,
9431
(
1991
).
17.
M. F.
Herman
and
E.
Kluk
,
Chem. Phys.
91
,
27
(
1984
).
18.
E.
Kluk
,
M. F.
Herman
, and
H. L.
Davis
,
J. Chem. Phys.
84
,
326
(
1986
).
19.
V. S.
Filinov
,
Nucl. Phys. B
271
,
717
(
1986
).
20.
N.
Makri
and
W. H.
Miller
,
Chem. Phys. Lett.
139
,
10
(
1987
).
21.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
89
,
2170
(
1988
).
22.
J. D.
Doll
,
D. L.
Freeman
, and
M. J.
Gillan
,
Chem. Phys. Lett.
143
,
277
(
1988
).
23.
A. R.
Walton
and
D. E.
Manolopoulos
,
Mol. Phys.
84
,
961
(
1996
).
24.
M. L.
Brewer
,
J. S.
Hulme
, and
D. E.
Manolopoulos
,
J. Chem. Phys.
106
,
4832
(
1997
).
25.
N.
Makri
and
K.
Thompson
,
Chem. Phys. Lett.
291
,
101
(
1998
).
26.
K.
Thompson
and
N.
Makri
,
J. Chem. Phys.
110
,
1343
(
1999
).
27.
W. H.
Miller
,
Faraday Discuss.
110
,
1
(
1998
).
28.
V.
Batista
,
M. T.
Zanni
,
J.
Greenblatt
,
D. M.
Neumark
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
3736
(
1999
).
29.
X.
Sun
and
W. H.
Miller
,
J. Chem. Phys.
110
,
6635
(
1999
).
30.
K.
Thompson
and
N.
Makri
,
Phys. Rev. E
59
,
R4729
(
1999
).
31.
O.
Kuhn
and
N.
Makri
,
J. Phys. Chem.
103
,
9487
(
1999
).
32.
J.
Shao
and
N.
Makri
,
J. Phys. Chem.
103
,
7753
(
1999
).
33.
J.
Shao
and
N.
Makri
,
J. Phys. Chem.
103
,
9479
(
1999
).
34.
E. J.
Heller
,
J. Chem. Phys.
65
,
1289
(
1976
).
35.
H.
Wang
,
X.
Sun
, and
W. H.
Miller
,
J. Chem. Phys.
108
,
9726
(
1998
).
36.
R. T.
Skodje
,
Chem. Phys. Lett.
109
,
221
(
1984
).
37.
K. B.
Moller
,
J. P.
Dahl
, and
N. E.
Henriksen
,
J. Phys. Chem.
98
,
3272
(
1994
).
38.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4600
(
1995
).
39.
N.
Makri
,
J. Math. Phys.
36
,
2430
(
1995
).
40.
N.
Makri
,
J. Phys. Chem.
103
,
2823
(
1999
).
41.
A.
Genz
and
J.
Monahan
,
J. Comput. Appl. Math.
112
,
71
(
1999
).
42.
N.
Makri
and
D. E.
Makarov
,
J. Chem. Phys.
102
,
4611
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.