We present experimental evidence for nuclear spin selection rules in chemical reactions that have been theoretically anticipated by Quack [M. Quack, Mol. Phys. 34, 477 (1997)]. The abundance ratio of ortho-H3+(I=3/2) and para-H3+(I=1/2),R=[o-H3+]/[p-H3+], has been measured from relative intensities of their infrared spectral lines in hydrogen plasmas using para-H2 and normal-H2 (75% o-H2 and 25% p-H2). The observed clear differences in the value of R between the p-H2 and n-H2 plasmas demonstrate the spin memory of protons even after ion-neutral reactions, and thus the existence of selection rules for spin modifications. Both positive column discharges and hollow cathode discharges have been used to demonstrate the effect. Experiments using pulsed plasmas have been conducted in the hollow cathode to minimize the uncertainty due to long-term conversion between p-H2 and o-H2 and to study the time dependence of the o-H3+ to p-H3+ ratio. The observed R(t) has been analyzed using simultaneous rate equations assuming the nuclear spin branching ratios calculated from Quack’s theory. In p-H2 plasmas, the electron impact ionization followed by the ion-neutral reaction H2++H2→H3++H produces pure p-H3+, but the subsequent reaction between p-H3+ and p-H2 scrambles protons. While the proton hop reaction (rate constant kH) maintains the purity of p-H3+, the hydrogen exchange reaction (rate constant kE) produces o-H3+ and acts as the gateway for nuclear spin conversion. The value of R(t), therefore, depends critically on the ratio of their reaction rates α=kH/kE. From observed values of R(t), the ratio has been determined to be α=2.4. This is in approximate agreement with the value reported by Gerlich using isotopic species.

1.
C. N.
Yang
,
Science
127
,
565
(
1958
).
2.
G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand New York, 1966), Vols. I–III.
3.
T.
Oka
,
Adv. At. Mol. Phys.
9
,
127
(
1973
).
4.
L. D. Landau and E. M. Litshitz, Quantum Mechanics, Non-relativistic Theory (Pergamon, New York, 1965). Ortho, meta, and para are named in the order of the abundances of these species at room temperature.
5.
R. F.
Curl
, Jr.
,
J. V. V.
Kasper
, and
K. S.
Pitzer
,
J. Chem. Phys.
46
,
3220
(
1967
).
6.
I.
Ozier
,
Phys. Rev. Lett.
27
,
1329
(
1971
).
7.
J.
Bordé
,
Ch. J.
Bordé
,
Ch.
Salomon
,
A.
Van Lerberghe
,
M.
Ouhayoun
, and
C. D.
Cantrell
,
Phys. Rev. Lett.
45
,
14
(
1980
).
8.
B.
Nagels
,
N.
Calas
,
D. A.
Roozemond
,
L. J. F.
Hermans
, and
P. L.
Chapovsky
,
Phys. Rev. Lett.
77
,
4732
(
1996
).
9.
M.
Quack
,
Mol. Phys.
34
,
477
(
1977
).
10.
J. T.
Hougen
,
J. Chem. Phys.
37
,
1433
(
1962
).
11.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
12.
J. K. G.
Watson
,
Can. J. Phys.
43
,
1996
(
1965
).
13.
B.
Schramm
,
D. J.
Bamford
, and
C. B.
Moore
,
Chem. Phys. Lett.
98
,
305
(
1983
);
J.
Kern
,
H.
Schwahn
, and
B.
Schramm
,
Chem. Phys. Lett.
154
,
292
(
1989
).
14.
C. R.
Bowers
and
D. P.
Weitekamp
,
Phys. Rev. Lett.
57
,
2645
(
1986
).
15.
D.
Uy
,
M.
Cordonnier
, and
T.
Oka
,
Phys. Rev. Lett.
78
,
3844
(
1997
).
16.
T. Oka, in Molecular Ions: Spectroscopy, Structure and Chemistry, edited by T. A. Miller and V. E. Bondybey (North-Holland, Oxford, 1983).
17.
T.
Oka
,
Rev. Mod. Phys.
64
,
1141
(
1992
).
18.
A.
Dalgarno
,
Adv. At., Mol., Opt. Phys.
32
,
57
(
1994
).
19.
J.
Tennyson
,
Rep. Prog. Phys.
57
,
421
(
1995
).
20.
I. R. McNab, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Wiley, New York, 1995), Vol. LXXXIX, p. 1.
21.
T. R.
Geballe
and
T.
Oka
,
Nature (London)
384
,
334
(
1996
).
22.
B. J.
McCall
,
T. R.
Geballe
,
K. H.
Hinkle
, and
T.
Oka
,
Science
279
,
1910
(
1998
).
23.
J.
Tennyson
,
S.
Miller
, and
H.
Schild
,
J. Chem. Soc., Faraday Trans.
89
,
2155
(
1993
).
24.
T.
Oka
,
Philos. Trans. R. Soc. London, Ser. A
303
,
543
(
1981
).
25.
T. R.
Geballe
and
T.
Oka
,
Astrophys. J.
342
,
855
(
1989
).
26.
J. H.
Black
,
E. F.
van Dishoeck
,
S. P.
Willner
, and
R. C.
Woods
,
Astrophys. J.
358
,
459
(
1990
).
27.
K. F.
Bonhoeffer
and
P.
Harteck
,
Z. Phys. Chem. Abt. B
5
,
292
(
1929
).
28.
P. L.
Chapovsky
,
L. N.
Krasnoperov
,
V. N.
Panfilov
, and
V. P.
Strunin
,
Chem. Phys.
97
,
449
(
1985
);
P. L.
Chapovsky
,
Sov. Phys. JETP
70
,
895
(
1990
);
P. L.
Chapovsky
,
Phys. Rev. A
43
,
3624
(
1991
);
P. L.
Chapovsky
,
D.
Papousek
, and
J.
Demaison
,
Chem. Phys. Lett.
209
,
305
(
1993
);
A. E.
Bakarev
and
P. L.
Chapovsky
,
JETP Lett.
44
,
4
(
1986
);
L. N.
Krasnoperov
,
V. N.
Panfilov
,
V. P.
Strunin
, and
P. L.
Chapovsky
,
JETP Lett.
39
,
143
(
1984
).
29.
V. K.
Konyukhov
,
A. M.
Prokhorov
,
V. I.
Tikhonov
, and
V. N.
Faizulaev
,
JETP Lett.
43
,
85
(
1986
).
30.
H. G.
Weber
and
M.
Stock
,
Phys. Lett. A
50
,
343
(
1974
).
31.
R. A.
Bernheim
,
C.
He
, and
G.
Alzetta
,
J. Chem. Phys.
92
,
5959
(
1990
);
C.
He
and
R. A.
Bernheim
,
J. Chem. Phys.
95
,
8131
(
1991
).
32.
See, for instance,
M. G.
Bawendi
,
B. D.
Rehfuss
, and
T.
Oka
,
J. Chem. Phys.
93
,
6200
(
1990
).
33.
1-Houdry, Division of Air Products and Chem. Inc. Philadelphia, PA (Apachi Nickel–Silica Catalyst No. 197-CP).
34.
M. W.
Crofton
,
M.-F.
Jagod
,
B. D.
Rehfuss
,
W. A.
Kreiner
, and
T.
Oka
,
J. Chem. Phys.
88
,
666
(
1988
).
35.
C. M.
Gabrys
,
D.
Uy
,
M.-F.
Jagod
,
T.
Oka
, and
T.
Amano
,
J. Phys. Chem.
99
,
15611
(
1995
).
36.
L.
Kao
,
T.
Oka
,
S.
Miller
, and
J.
Tennyson
,
Ap. J. Suppl.
77
,
317
(
1991
).
37.
T.
Oka
,
Phys. Rev. Lett.
45
,
531
(
1980
).
38.
J. K. G.
Watson
,
J. Mol. Spectrosc.
103
,
350
(
1984
).
39.
C. S.
Gudeman
and
R. J.
Saykally
,
Annu. Rev. Phys. Chem.
35
,
387
(
1984
).
40.
S. C.
Foster
,
A. R. W.
McKellar
, and
T. J.
Sears
,
J. Chem. Phys.
81
,
578
(
1984
).
41.
J. U.
White
,
J. Opt. Soc. Am.
32
,
285
(
1942
).
42.
J. H. Moore, C. Davis, and M. A. Coplan, Building Scientific Apparatus (Addison-Wesley, Reading, MA, 1983).
43.
A. von Engel, Ionized Gases (Oxford University Press, Oxford, 1965).
44.
J. L.
Kieffer
,
At. Data
1
,
19
(
1969
).
45.
D.
Rapp
and
P.
Englander-Golden
,
J. Chem. Phys.
43
,
1464
(
1965
).
46.
M.
Saporoschenko
,
Phys. Rev.
139
,
A349
(
1965
);
D. L.
Albritton
,
T. M.
Miller
,
D. W.
Martin
, and
E. W.
McDaniel
,
Phys. Rev.
171
,
94
(
1968
).
47.
V. G.
Anicich
and
W. T.
Huntress
, Jr.
,
Astrophys. J., Suppl.
62
,
553
(
1986
).
48.
A. B.
Lees
and
P. K.
Rol
,
J. Chem. Phys.
61
,
4444
(
1974
).
49.
K. R.
Krenos
,
K. K.
Lehmann
,
J. C.
Tully
,
P. M.
Hierl
, and
G. P.
Smith
,
Chem. Phys.
16
,
109
(
1976
).
50.
J. E.
Pollard
,
L. K.
Johnson
,
D. A.
Lichtin
, and
R. B.
Cohen
,
J. Chem. Phys.
95
,
4877
(
1991
).
51.
N. G.
Adams
and
D.
Smith
,
Astrophys. J.
248
,
373
(
1981
).
52.
M. T.
Leu
,
M. A.
Biondi
, and
R.
Johnsen
,
Phys. Rev. A
8
,
413
(
1973
).
53.
N. G.
Adams
,
D.
Smith
, and
E.
Alge
,
J. Chem. Phys.
81
,
1778
(
1984
);
N. G. Adams and D. Smith, in IAU Symposium 120, Astrochemistry, edited by M. S. Vardya and S. P. Tarafdar (Reidel, Dordrecht, 1987), pp. 1–18.
54.
H.
Hus
,
F. B.
Yousif
,
A.
Sen
, and
J. B. A.
Mitchell
,
Phys. Rev. A
38
,
658
(
1988
).
55.
T.
Amano
,
J. Chem. Phys.
92
,
6492
(
1990
).
56.
A.
Canosa
,
J. C.
Gomet
,
B. R.
Rowe
,
J. B. A.
Mitchell
, and
J. L.
Queffelec
,
J. Chem. Phys.
97
,
1028
(
1992
).
57.
M.
Larsson
,
H.
Danared
,
J. R.
Mowat
,
P.
Sigray
,
G.
Sundström
,
L.
Broström
,
A.
Filevich
,
A.
Källbeg
,
S.
Mannervik
,
K. G.
Rensfelt
, and
S.
Datz
,
Phys. Rev. Lett.
70
,
430
(
1993
).
58.
A. Farkas, Orthohydrogen, Parahydrogen, and Heavy Hydrogen (Cambridge University Press, London, 1935).
59.
D. Uy, C. M. Gabrys, T. Oka, B. J. Cotterell, R. S. Stickland, and Ch. Jungen (unpublished).
60.
I.
Langmuir
,
Phys. Rev.
26
,
585
(
1925
).
61.
D.
Gerlich
,
J. Chem. Soc., Faraday Trans.
89
,
2199
(
1993
).
62.
M.
Fehér
,
A.
Rohrbacher
, and
J. P.
Maier
,
Chem. Phys.
185
,
357
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.