The electronic properties of copper cyanide cluster anions [Cun(CN)m;n=1–6,m=1–6] were studied using photoelectron spectroscopy (PES) with a magnetic-bottle type electron spectrometer. Both the anions and the cations of the Cun(CN)m cluster were generated by laser vaporization of a molded copper cyanide rod in a He carrier gas. In the mass spectra, abundant clusters were produced at the composition of (n,m)=(n,n+1;n=1−6) and (n,n;n=4 and 5) for the anions, whereas more abundant clusters were observed at (n, n−1;n=1−9) for the cations. The stability of Cun(CN)n+1 and Cun(CN)n−1+ clusters is attributed to their electronic structure, where ionic Cu+ and CN are linked alternately in a linear geometry. The PES spectra of the Cun(CN)m anions show that the (n,n+1) clusters exhibit an extremely large EA of above 4.5 eV, while the EA’s of the less abundant (n,n) clusters increase monotonously with cluster size from 1.3 eV (n=1) to 3.12 eV (n=6), except for n=4 and 5. Together with theoretical calculations by the density functional theory (DFT), two different linear isomers have been found for (n,n) clusters, where CN takes a opposite direction toward Cu. For Cu4(CN)4 and Cu5(CN)5, moreover, the PES spectra show two components of distinctly different peak shape, suggesting that a ring isomer should coexist with the linear ones.

1.
Conference Proceedings;
Z. Phys. D: At., Mol. Clusters
19
(
1991
);
26
(
1993
);
Surf. Rev. Lett.
3
(
1996
);
Z. Phys. D: At., Mol. Clusters
40
(
1997
), and references therein.
2.
T. P.
Martin
,
Phys. Rep.
95
,
167
(
1983
);
T. P.
Martin
,
Surf. Sci.
156
,
584
(
1985
).
3.
R.
Pflaum
,
P.
Pfau
,
K.
Sattler
, and
E.
Recknagel
,
Surf. Sci.
156
,
165
(
1985
).
4.
I.
Katakuse
,
T.
Ichihara
,
H.
Ito
,
T.
Matsuo
,
T.
Sakurai
, and
H.
Matsuda
,
Mass Spectrosc. (Tokyo)
2
,
191
(
1988
).
5.
Y. J.
Twu
,
C. W. S.
Conover
,
Y. A.
Yang
, and
L. A.
Bloomfield
,
Phys. Rev. B
42
,
5306
(
1990
).
6.
T.
Sugai
and
H.
Shinohara
,
Chem. Phys. Lett.
281
,
57
(
1997
).
7.
E. C.
Honea
,
M. L.
Homer
,
P.
Labastie
, and
R. L.
Whetten
,
Phys. Rev. Lett.
63
,
394
(
1989
).
8.
P. Xia, A. J. Cox, Y. A. Yang, and L. A. Bloomfield, in Physics and Chemistry of Finite Systems: From Clusters to Crystals, edited by P. Jena, S. N. Khanna, B. K. Rao NATO ASI Series C (1992), Vol. 374, p. 1019.
9.
U.
Landman
,
U.
Scharf
, and
J.
Jortner
,
Phys. Rev. Lett.
54
,
1860
(
1985
).
10.
N. G.
Phillips
,
C. W. S.
Conover
, and
L. A.
Bloomfield
,
J. Chem. Phys.
94
,
4980
(
1991
).
11.
P.
Weis
,
C.
Ochsenfeld
,
R.
Ahlrichs
, and
M. M.
Kappes
,
J. Chem. Phys.
97
,
2553
(
1992
).
12.
P.
Kruit
and
F. H.
Read
,
J. Phys. E
16
,
313
(
1983
).
13.
O.
Cheshnovsky
,
S. H.
Yang
,
C. L.
Pettiette
,
M. J.
Craycraft
, and
R. E.
Smalley
,
Rev. Sci. Instrum.
58
,
2131
(
1987
).
14.
G.
Ganteför
,
K. H.
Meiwes-Broer
, and
H. O.
Lutz
,
Phys. Rev. A
37
,
2716
(
1988
).
15.
R.
Busani
,
M.
Folkers
, and
O.
Cheshnovsky
,
Phys. Rev. Lett.
81
,
3836
(
1998
).
16.
J.
Scheidt
and
R.
Weinkauf
,
J. Chem. Phys.
110
,
304
(
1999
).
17.
S.
Burkart
,
N.
Blessing
,
B.
Klipp
,
J.
Muller
, and
G.
Seifert
,
Chem. Phys. Lett.
301
,
546
(
1999
).
18.
X. B.
Wang
and
L. S.
Wang
,
Nature (London)
400
,
245
(
1999
).
19.
H.
Handschuh
,
G.
Ganteför
, and
W.
Eberhardt
,
Rev. Sci. Instrum.
66
,
3838
(
1995
).
20.
L. S.
Wang
,
H. S.
Wang
, and
J.
Fan
,
J. Chem. Phys.
102
,
9480
(
1998
).
21.
R.
Klein
,
R. P.
McGinnis
, and
S. R.
Leone
,
Chem. Phys. Lett.
100
,
475
(
1983
).
22.
I. G.
Dance
,
P. A. W.
Dean
, and
K. J.
Fisher
,
Inorg. Chem.
33
,
6261
(
1994
).
23.
S.
Kroeker
,
R. E.
Wasylishen
, and
J. V.
Hanna
,
J. Am. Chem. Soc.
121
,
1582
(
1999
).
24.
A.
Nakajima
,
T.
Taguwa
,
K.
Hoshino
,
T.
Sugioka
,
T.
Naganuma
,
F.
Ono
,
K.
Watanabe
,
K.
Nakao
,
Y.
Konishi
,
R.
Kishi
, and
K.
Kaya
,
Chem. Phys. Lett.
214
,
22
(
1993
).
25.
H.
Hotop
and
W. C.
Lineberger
,
J. Phys. Chem. Ref. Data
4
,
539
(
1975
).
26.
V. A.
Esaulov
,
Ann. Phys. (Paris)
11
,
493
(
1986
).
27.
A.
Schäfer
,
H.
Horn
, and
R.
Ahlrichs
,
J. Chem. Phys.
97
,
2571
(
1992
).
28.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Oxford, Oxford University Press, 1990).
29.
T. J.
Lee
and
H. F.
Schaefer
III
,
J. Chem. Phys.
83
,
1784
(
1985
).
30.
GAUSSIAN 94, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chan, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Revision B.2, Gaussian, Inc., Pittsburgh, Pennsylvania, 1995.
31.
F. A. Cotton and G. Wilkinson, Advanced Inorganic Chemistry, 5th ed. (Wiley, New York, 1988).
32.
G. A.
Bowmaker
,
B. J.
Kennedy
, and
J. C.
Reid
,
Inorg. Chem.
37
,
3968
(
1998
).
33.
G. W.
Arnold
,
S. E.
Bradforth
,
T. N.
Kitsopoulos
, and
D. M.
Neumark
,
J. Chem. Phys.
95
,
8753
(
1991
).
34.
S.
Yang
,
K. J.
Taylor
,
M. J.
Craycraft
,
J.
Conceicao
,
C. L.
Pettiette
,
O.
Cheshnovsky
, and
R. E.
Smalley
,
Chem. Phys. Lett.
144
,
431
(
1988
).
35.
C.
Kappenstein
,
R. P.
Hugel
,
A. J.
Alix
, and
J. J.
Beaudoin
,
J. Chim. Phys. Phys.-Chim. Biol.
75
,
427
(
1978
).
36.
R. J. Lancashire, in Comprehensive Coordination Chemistry, edited by G. Willkinson, R. G. Gillard, and J. A. MacCleverty (Oxford, United Kingdom 1987).
37.
P.
Gans
,
J. B.
Gill
,
M.
Griffin
, and
P. C.
Cahill
,
J. Chem. Soc. Dalton Trans.
4
,
968
(
1981
).
38.
D. T.
Cromer
,
Acta Crystallogr.
61
,
1388
(
1957
).
39.
C. D.
West
,
Z. Kristallogr.
88
,
173
(
1934
).
40.
D. T.
Cromer
,
R. M.
Douglass
, and
E.
Staritzky
,
Anal. Chem.
29
,
317
(
1957
).
41.
J. D.
Kildea
,
B. W.
Skelton
, and
A. H.
White
,
Aust. J. Chem.
38
,
1329
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.