The second-order memory function (SOMF) for the dicyclohexylmetyl-2metyl succinate is obtained by using simple numerical manipulation of the experimental dielectric data. According to the prescription given in a previous paper [J. Chem. Phys. 109, 9057 (1998)], the frequency behavior of the real and imaginary parts of the SOMF is discussed in terms of the Havriliak-Negami equation of the dielectric function, and together with the three-variable model describing the evolution of the torque-autocorrelation function. Furthermore, in this paper we present the temperature dependence of the parameters, which characterize the SOMF behavior for two ester substances.
REFERENCES
1.
J. P. Boon and S. Yip, Molecular hydrodynamics (McGraw-Hill, New York, 1960).
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
W. Götze, in Liquids Freezing and the Glass Transition, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1989).
13.
14.
P. A.
Madden
and D.
Kivelson
, Adv. Chem. Phys.
56
, 467
(1984
).15.
16.
W. A.
Steele
, Adv. Chem. Phys.
34
, 1
(1964
).17.
R.
Dı́az-Calleja
, M. J.
Sanchis
, and L. F.
del Castillo
, J. Chem. Phys.
109
, 9057
(1998
).18.
J. R. McDonald, “Complex Non-Linear Least Squares Inmitance Fitting Program,” LEVM6, 1993.
19.
20.
M. T.
Cicerone
, R. F.
Blackburn
, and M. D.
Ediger
, J. Chem. Phys.
102
, 471
(1995
).21.
C. T.
Moynihan
, Phys. Chem. Glasses
14
, 122
(1973
).22.
C. A.
Angell
, J. Non-Cryst. Solids
3
, 131
(1991
).
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.