We have used infrared–infrared double resonance spectroscopy to record a rovibrational eigenstate resolved spectrum of benzene in the region of the CH stretch first overtone. This experiment is the first of a series aimed at investigating intramolecular vibrational energy redistribution (IVR) in aromatic molecules. The experiment has been carried out in a supersonic molecular beam apparatus using bolometric detection. A tunable resonant cavity was used to enhance the on-beam intensity of the 1.5 μm color center laser used to pump the overtone, and a fixed frequency [R(30)]CO213 laser was used to saturate the coinciding ν18rQ(2) transition of benzene. After assigning the measured lines of the highly IVR fractionated spectrum to their respective rotational quantum number J, analysis of the data reveals that the dynamics occurs on several distinct time scales and is dominated by anharmonic coupling with little contribution from Coriolis coupling. After the fast (∼100 fs) redistribution of the energy among the previously observed “early time resonances” [R. H. Page, Y. R. Shen, and Y. T. Lee, J. Chem. Phys. 88, 4621 (1988) and 88, 5362 (1988)], a slower redistribution (10–20 ps) takes place, which ultimately involves most of the symmetry allowed vibrational states in the energy shell. Level spacing statistics reveal that IVR produces a highly mixed, but nonstatistical, distribution of vibrational excitation, even at infinite time. We propose that this nonintuitive phenomenon may commonly occur in large molecules when the bright state energy is localized in a high-frequency mode.

1.
N. B. Slater, Theory of Unimolecular Reactions (Cornell University Press, Ithaca, NY, 1959).
2.
R. A.
Marcus
and
O. K.
Rice
,
J. Phys. Colloid Chem.
55
,
894
(
1951
).
3.
R. A.
Marcus
and
O. K.
Rice
,
J. Chem. Phys.
20
,
359
(
1952
).
4.
H. M.
Rosenstock
,
M. B.
Wallenstein
,
A. L.
Wahrhaftig
, and
H.
Eyring
,
Proc. Natl. Acad. Sci. U.S.A.
38
,
667
(
1952
).
5.
T. Baer and W. L. Hase, Unimolecular Reaction Dynamics (Oxford University Press, New York, 1996).
6.
K. A. Holbrook, M. J. Pilling, and S. H. Robertson, Unimolecular Reactions, 2nd ed. (Wiley, Chichester, 1996).
7.
E. J.
Heller
,
J. Chem. Phys.
92
,
1718
(
1990
).
8.
A. M.
de Souza
,
D.
Kaur
and
D. S.
Perry
,
J. Chem. Phys.
88
,
4569
(
1988
).
9.
G. A.
Bethardy
and
D. S.
Perry
,
J. Chem. Phys.
98
,
6651
(
1993
).
10.
K.
von Puttkamer
,
H.-R.
Dübal
, and
M.
Quack
,
Faraday Discuss. Chem. Soc.
75
,
197
(
1983
).
11.
Quack
,
Annu. Rev. Phys. Chem.
X
,
839
(
1990
).
12.
M.
Quack
and
J.
Stohner
,
J. Phys. Chem.
97
,
12
574
(
1993
).
13.
K. K.
Lehmann
,
B. H.
Pate
, and
G.
Scoles
,
J. Chem. Phys.
93
,
2152
(
1990
).
14.
K. K. Lehmann, B. H. Pate, and G. Scoles, in Mode Selective Chemistry, edited by J. Jortner et al. (Kluwer Academic, Dordrecht, 1991), pp. 17–23.
15.
E. R. T.
Kerstel
,
K. K.
Lehmann
,
T. F.
Mentel
,
B. H.
Pate
, and
G.
Scoles
,
J. Phys. Chem.
95
,
8282
(
1991
).
16.
J. E.
Gambogi
,
K. K.
Lehmann
,
B. H.
Pate
,
G.
Scoles
, and
X.
Yang
,
J. Chem. Phys.
98
,
1748
(
1993
).
17.
A. A.
Stuchebrukhov
and
R. A.
Marcus
,
J. Chem. Phys.
98
,
6044
(
1993
).
18.
M.
Bixon
and
J.
Jortner
,
J. Chem. Phys.
48
,
715
(
1968
).
19.
K. G.
Kay
,
J. Chem. Phys.
64
,
2112
(
1976
).
20.
K. G.
Kay
,
J. Chem. Phys.
61
,
5205
(
1974
).
21.
F. J.
Dyson
,
J. Math. Phys.
3
,
140
(
1962
).
22.
E. W.-G.
Diau
,
J. L.
Herek
,
Z. H.
Kim
, and
A. H.
Zewail
,
Science
279
,
847
(
1998
).
23.
M.
Gruebele
and
R.
Bigwood
,
Int. Rev. Phys. Chem.
17
,
91
(
1998
).
24.
J.
Segall
,
R. N.
Zare
,
H. R.
Dübal
,
M.
Lewerenz
, and
M.
Quack
,
J. Chem. Phys.
86
,
634
(
1987
).
25.
L.
Lubich
,
O. V.
Boyarkin
,
R. D. F.
Settle
,
D. S.
Perry
, and
T. R.
Rizzo
,
Faraday Discuss.
102
,
167
(
1995
).
26.
O. V.
Boyarkin
and
T. R.
Rizzo
,
J. Chem. Phys.
105
,
6285
(
1996
).
27.
D. J.
Nesbitt
and
R. W.
Field
,
J. Phys. Chem.
100
,
12
735
(
1996
).
28.
K. K.
Lehmann
and
G.
Scoles
,
Annu. Rev. Phys. Chem.
45
,
241
(
1994
).
29.
T.
Uzer
,
Phys. Rep.
199
,
73
(
1991
).
30.
T.
Guhr
,
A.
Müller-Groeling
, and
H. A.
Weidenmüller
,
Phys. Rep.
299
,
189
(
1998
).
31.
K. F.
Freed
,
Faraday Discuss. Chem. Soc.
67
,
231
(
1979
).
32.
K. F.
Freed
and
A.
Nitzan
,
J. Chem. Phys.
73
,
4765
(
1980
).
33.
C.
Iung
and
R. E.
Wyatt
,
J. Chem. Phys.
99
,
2261
(
1993
).
34.
T. J.
Minehardt
and
R. E.
Wyatt
,
Chem. Phys. Lett.
295
,
373
(
1998
);
T. J.
Minehardt
and
R. E.
Wyatt
,
Chem. Phys. Lett.
312
,
485
(
1999
).
35.
T. J.
Minehardt
and
R. E.
Wyatt
,
J. Chem. Phys.
109
,
8330
(
1998
).
36.
T. J.
Minehardt
,
J. D.
Adcock
, and
R. E.
Wyatt
,
Chem. Phys. Lett.
303
,
537
(
1999
).
37.
T. J.
Minehardt
,
J. D.
Adcock
, and
R. E.
Wyatt
,
J. Chem. Phys.
110
,
3326
(
1999
).
38.
T. J.
Minehardt
,
J. D.
Adcock
,
R. E.
Wyatt
, and
C.
Iung
,
Chem. Phys. Lett.
303
,
347
(
1999
).
39.
S.
Rashev
,
M.
Stamova
, and
L.
Kancheva
,
J. Chem. Phys.
109
,
585
(
1998
).
40.
E. L.
Sibert
III
,
W. P.
Reinhardt
, and
J. T.
Hynes
,
J. Chem. Phys.
81
,
1115
(
1984
).
41.
R. E.
Wyatt
,
C.
Iung
, and
C.
Leforestier
,
J. Chem. Phys.
97
,
3477
(
1992
).
42.
R. E.
Wyatt
and
C.
Iung
,
J. Chem. Phys.
98
,
5191
(
1993
).
43.
R. E.
Wyatt
and
C.
Iung
,
J. Chem. Phys.
98
,
3577
(
1993
).
44.
R. E.
Wyatt
and
C.
Iung
,
J. Chem. Phys.
98
,
6758
(
1993
).
45.
R. E.
Wyatt
,
J. Chem. Phys.
109
,
10
732
(
1998
).
46.
Y.
Zhang
and
R. A.
Marcus
,
J. Chem. Phys.
97
,
5283
(
1992
).
47.
Y.
Zhang
and
R. A.
Marcus
,
J. Chem. Phys.
96
,
6065
(
1992
).
48.
M. Quack, in Mode Selective Chemistry, edited by J. Jortner et al. (Kluwer Academic Publisher, Dordrecht, 1991), pp. 47–65.
49.
P.
Esherick
,
A.
Owywong
, and
J.
Pliva
,
J. Chem. Phys.
83
,
3311
(
1985
).
50.
J.
Pliva
and
A. S.
Pine
,
J. Mol. Spectrosc.
126
,
82
(
1987
).
51.
H.
Hollenstein
,
S.
Piccirillo
,
M.
Quack
, and
M.
Snels
,
Mol. Phys.
71
,
759
(
1990
).
52.
J.
Domenech
,
M.-L.
Junttila
, and
A. S.
Pine
,
J. Mol. Spectrosc.
149
,
391
(
1991
).
53.
M. L.
Junttila
,
J. L.
Domenech
,
G. T.
Fraser
, and
A. S.
Pine
,
J. Mol. Spectrosc.
147
,
513
(
1991
).
54.
M.
Snels
,
A.
Beil
,
H.
Hollenstein
, and
M.
Quack
,
Chem. Phys.
225
,
107
(
1997
).
55.
R. G.
Bray
and
M. J.
Berry
,
J. Chem. Phys.
71
,
4909
(
1979
).
56.
S.
Shi
and
W. H.
Miller
,
Theor. Chim. Acta
68
,
1
(
1989
).
57.
K. V.
Reddy
,
D. F.
Heller
, and
M. J.
Berry
,
J. Chem. Phys.
76
,
2814
(
1982
).
58.
L.
Halonen
,
Chem. Phys. Lett.
87
,
221
(
1982
).
59.
R. H.
Page
,
Y. R.
Shen
, and
Y. T.
Lee
,
J. Chem. Phys.
88
,
4621
(
1988
).
60.
R. H.
Page
,
Y. R.
Shen
, and
Y. T.
Lee
,
J. Chem. Phys.
88
,
5362
(
1988
).
61.
M.
Scotoni
,
A.
Boschetti
,
N.
Oberhofer
, and
D.
Bassi
,
J. Chem. Phys.
94
,
971
(
1991
).
62.
F.
Iachello
and
S.
Oss
,
J. Mol. Spectrosc.
153
,
225
(
1992
).
63.
J. A.
Nicholson
and
W. D.
Lawrance
,
Chem. Phys. Lett.
236
,
336
(
1995
).
64.
A.
Callegari
,
H. K.
Srivastava
,
U.
Merker
,
K. K.
Lehmann
,
G.
Scoles
, and
M.
Davis
,
J. Chem. Phys.
106
,
432
(
1997
).
65.
S.
Rashev
,
M.
Stamova
, and
S.
Djambova
,
J. Chem. Phys.
108
,
4797
(
1998
).
66.
P.
Pulay
,
G.
Fogarasi
, and
J. E.
Boggs
,
J. Chem. Phys.
74
,
3999
(
1981
).
67.
L.
Goodman
,
A. G.
Ozkabak
, and
S. N.
Thakur
,
J. Phys. Chem.
95
,
9044
(
1991
).
68.
C. J. O’Brien, “Improvement to an infrared laser-molecular beam spectrometer for IVR studies,” Senior thesis, Princeton University, 1994.
69.
J. E.
Gambogi
,
M.
Becucci
,
C. J.
O’Brien
,
K. K.
Lehmann
, and
G.
Scoles
,
Ber. Bunsenges. Phys. Chem.
99
,
548
(
1995
).
70.
K.
Chen
and
E. S.
Yeung
,
J. Chem. Phys.
69
,
43
(
1978
).
71.
G. Herzberg, Molecular Spectra and Molecular Structure (Van Nostrand, New York, 1945), Vol. II. Infrared and Raman spectra of polyatomic molecules.
72.
D.
Romanini
and
K. K.
Lehmann
,
J. Chem. Phys.
98
,
6437
(
1993
).
73.
B.
Pate
,
K.
Lehmann
, and
G.
Scoles
,
J. Chem. Phys.
95
,
3891
(
1991
).
74.
M.
Quack
,
J. Chem. Phys.
82
,
3277
(
1985
).
75.
W.
Lawrence
and
A.
Knight
,
J. Phys. Chem.
89
,
917
(
1985
).
76.
E. J. Heller and R. L. Sundberg, in Chaotic Behavior in Quantum Systems, Vol. 120 of NATO ASI, edited by G. Casati (Plenum, Como, Italy, 1985), pp. 255–292.
77.
F. J.
Dyson
and
M. L.
Mehta
,
J. Math. Phys.
4
,
701
(
1963
).
78.
K. K.
Lehmann
and
S. L.
Coy
,
J. Chem. Phys.
87
,
5415
(
1987
).
79.
P. E. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw-Hill, New York, 1992).
80.
S. Brandt, Statistical and Computational Methods in Data Analysis (North-Holland, Amsterdam, 1970).
81.
M.
Robnik
,
Prog. Theor. Phys. Suppl.
116
,
331
(
1994
).
82.
K. K.
Lehmann
and
S. L.
Coy
,
Ber. Bunsenges. Phys. Chem.
92
,
306
(
1988
).
83.
T.
Oka
,
J. Chem. Phys.
47
,
5410
(
1967
).
84.
C. S.
Parmenter
,
Faraday Discuss. Chem. Soc.
75
,
7
(
1983
).
85.
D.
Madsen
,
R.
Pearman
, and
M.
Gruebele
,
J. Chem. Phys.
106
,
5874
(
1997
).
86.
R.
Pearman
and
M.
Gruebele
,
J. Chem. Phys.
108
,
6561
(
1998
).
87.
M. Quack, in Femtosecond Chemistry, edited by J. Manz and L. Wöste (Verlag Chemie, Weinheim, 1994), pp. 781–818.
88.
S.
Mukamel
,
J.
Sue
, and
A.
Pandey
,
Chem. Phys. Lett.
105
,
134
(
1984
).
This content is only available via PDF.
You do not currently have access to this content.