To elucidate surface diffusion in the presence of a coadsorbate with superlattice ordering, we consider particle hopping on a square lattice with some fraction, θB, of quenched blocking sites arranged with checkerboard or c(2×2) ordering. Behavior for low θB corresponds to diffusion around isolated obstacles, and can be described by exact density expansions. Behavior for high θB corresponds to percolative diffusion along (or sometimes away from) domain boundaries. The connectivity of these domain boundaries is closely related to the existence of symmetry breaking [i.e., long-range c(2×2) order] in the distribution of blocking sites. In some cases, symmetry breaking induces critical behavior for diffusive transport which is fundamentally different from that for the conventional “ant in the labyrinth” problem. Our results apply to recently developed models for CO oxidation, where CO(ads) diffuses rapidly through coadsorbed relatively immobile c(2×2)-O(ads). The characterization of CO diffusion in these systems is key to describing spatial pattern formation.

1.
A. Bunde and S. Havlin, in Fractals and Disordered Systems, edited by A. Bunde and S. Havlin (Springer, Berlin, 1991), Chaps. 2–3.
2.
S. R.
Broadbent
and
J. M.
Hammersley
,
Proc. Cambridge Philos. Soc.
53
,
629
(
1957
).
3.
P. G.
de Gennes
,
Recherche
7
,
919
(
1976
).
4.
D. Stauffer and A. Aharony, Introduction to Percolation Theory, 2nd ed. (Taylor & Francis, London, 1992).
5.
M. H.
Ernst
,
Physica A
140
,
390
(
1986
).
6.
T. M.
Nieuwenhuizen
,
P. F. J.
van Velthoven
, and
M. H.
Ernst
,
Phys. Rev. Lett.
57
,
2477
(
1986
).
7.
T. M.
Nieuwenhuizen
,
P. F. J.
van Velthoven
, and
M. H.
Ernst
,
J. Phys. A
20
,
4001
(
1987
).
8.
M. H.
Ernst
,
T. M.
Nieuwenhuizen
, and
P. F. J.
van Velthoven
,
J. Phys. A
20
,
5335
(
1987
).
9.
S.
Kirkpatrick
,
Rev. Mod. Phys.
45
,
574
(
1973
).
10.
R.
Imbihl
and
G.
Ertl
,
Chem. Rev.
95
,
697
(
1995
).
11.
M.
Tammaro
and
J. W.
Evans
,
J. Chem. Phys.
108
,
762
(
1998
).
12.
M.
Tammaro
and
J. W.
Evans
,
J. Chem. Phys.
108
,
7795
(
1998
).
13.
P. J. M.
Bastiaansen
and
H. J. F.
Knops
,
J. Phys. A
30
,
1971
(
1997
).
14.
V. P.
Zhdanov
and
B.
Kasemo
,
Surf. Sci.
412/413
,
527
(
1998
).
15.
Y.
Suchorski
,
J.
Beben
,
E. W.
James
,
J. W.
Evans
, and
R.
Imbihl
,
Phys. Rev. Lett.
82
,
1907
(
1999
).
16.
E. W.
James
,
C.
Song
, and
J. W.
Evans
,
J. Chem. Phys.
111
,
6579
(
1999
).
17.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. Lett.
84
,
955
(
2000
).
18.
C. R.
Brundle
,
R. J.
Behm
, and
J. A.
Barker
,
J. Vac. Sci. Technol. A
2
,
1038
(
1984
).
19.
S.-L.
Chang
and
P. A.
Thiel
,
Phys. Rev. Lett.
59
,
296
(
1987
).
20.
E. M.
Stuve
,
R. J.
Madix
, and
C. R.
Brundle
,
Surf. Sci.
144
,
155
(
1984
).
21.
R.
Gomer
,
Rep. Prog. Phys.
53
,
917
(
1990
).
22.
F. M.
Bulnes
,
V.
Pereyra
,
J. L.
Riccardo
, and
G.
Zgrablich
,
J. Chem. Phys.
111
,
5181
(
1999
).
23.
S.
Liu
,
L.
Bönig
,
J.
Detch
, and
H.
Metiu
,
Phys. Rev. Lett.
74
,
4495
(
1995
).
24.
L.
Onsager
,
Phys. Rev.
37
,
405
(
1931
).
25.
L.
Onsager
,
Phys. Rev.
38
,
2265
(
1931
).
26.
R.
Kutner
and
K. W.
Kehr
,
Philos. Mag. B
48
,
199
(
1983
).
27.
C. H.
Mak
,
H. C.
Andersen
, and
S. M.
George
,
J. Chem. Phys.
88
,
4052
(
1988
).
28.
R.
Kutner
,
Phys. Lett.
81A
,
239
(
1981
).
29.
J. W.
Evans
,
Rev. Mod. Phys.
65
,
1281
(
1993
).
30.
This scenario can be achieved if one were to also completely block A from sites with four, three, or a linear pair of two neighboring B’s, mimicking the effect of a many-body A–B repulsive interaction. The analysis in Sec. II of the reduction to a single-particle diffusion problem can be easily extended to this case.
31.
D. S.
Gaunt
and
M. E.
Fisher
,
J. Chem. Phys.
43
,
2840
(
1965
).
32.
G.
Kamieniarz
and
H. W. J.
Blöte
,
J. Phys. A
26
,
201
(
1993
).
33.
R. J.
Baxter
,
I. G.
Enting
, and
S. K.
Tsang
,
J. Stat. Phys.
22
,
465
(
1980
).
34.
Z.
Ràcz
,
Phys. Rev. B
21
,
4012
(
1980
).
35.
D. W.
Wood
and
M.
Goldfinch
,
J. Phys. A
13
,
2781
(
1980
).
36.
C.-K.
Hu
and
K.-S.
Mak
,
Phys. Rev. B
39
,
2948
(
1989
).
37.
A.
Coniglio
,
F.
di Liberto
,
G.
Monroy
, and
F.
Peruggi
,
Phys. Lett.
87A
,
189
(
1982
).
38.
G.
Giacomin
,
J. L.
Lebowitz
, and
C.
Maes
,
J. Stat. Phys.
80
,
1379
(
1995
).
39.
D.-J.
Liu
and
J. W.
Evans
,
Phys. Rev. B
62
,
2134
(
2000
).
40.
J. W.
Evans
and
D. E.
Sanders
,
Phys. Rev. B
39
,
1587
(
1989
).
41.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
56
,
2553
(
1986
).
42.
R.
Fogelholm
,
J. Phys. C
13
,
L571
(
1980
).
43.
D. J.
Frank
and
C. J.
Lobb
,
Phys. Rev. B
37
,
302
(
1988
).
44.
S.
Alexander
and
R.
Orbach
,
J. Phys. (Paris)
43
,
L143
(
1982
).
45.
J.-M.
Normand
,
H. J.
Hermann
, and
M.
Hajjar
,
J. Stat. Phys.
52
,
441
(
1988
).
46.
P.
Grassberger
,
Physica A
262
,
251
(
1999
).
47.
H. W. J.
Blötte
and
X.-N.
Wu
,
J. Phys. A
23
,
L627
(
1990
).
48.
R. M.
Ziff
,
Phys. Rev. Lett.
69
,
2670
(
1992
).
49.
C.
Vanderzande
and
A. L.
Stella
,
J. Phys. A
22
,
L445
(
1989
).
50.
A. L.
Stella
and
C.
Vanderzande
,
Phys. Rev. Lett.
62
,
1067
(
1989
).
51.
C.
Vanderzande
,
J. Phys. A
25
,
L75
(
1992
).
52.
The apparent trend is that the higher the cluster df, the lower the hull df. It can be argued that the hull df→4/3+, as cluster df→2−, based on the idea that the hull df corresponds to the fractal dimension of a self-avoiding walk on the cluster (cf. Ref. 51).
53.
A.
Coniglio
,
F.
di Liberto
, and
G.
Monroy
,
J. Phys. A
14
,
3017
(
1981
).
54.
M.
Tammaro
,
J. W.
Evans
,
C. S.
Rastomjee
,
W.
Swiech
,
A. M.
Bradshaw
, and
R.
Imbihl
,
Surf. Sci.
407
,
162
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.