The two-dimensional potential energy surfaces for the X̃ 2Π and Ã 2Σ+ states of the He⋅SH and Ne⋅SH complexes have been calculated using the restricted open-shell coupled cluster theory [RCCSD(T)] and the triple-zeta augmented correlation consistent polarized basis sets with an additional (3s3p2d2f1g) set of bond functions. In the case of the Ã 2Σ+ state of Ne⋅SH the entire surface has also been developed using the quadruple-zeta basis set with bond functions as exploratory calculations demonstrated significant differences between the RCCSD(T) results obtained with the triple- and quadruple-zeta basis sets. These potentials are somewhat shallower and less anisotropic in comparison to the surfaces for the related He⋅OH and Ne⋅OH complexes. In contrast to He⋅OH and Ne⋅OH, we find that the linear Rg–SH (Rg=He, Ne) configurations are in all but one case lower in energy than the Rg–HS geometries. Variational calculations of the bound rotation-vibration states have been performed using Hamiltonians that included the RCCSD(T) potentials. The calculated ground-vibrational-state dissociation energy, D0, the frequency of the intermolecular stretching vibration, and the rotational constant are in very good agreement with the available experimental results for the X̃ 2Π state of both Ne⋅SH and Ne⋅SD. The energies of rotation-vibration levels for the Ne⋅SH and Ne⋅SD complexes in the Ã 2Σ+ state calculated using the triple- or quadruple-zeta potentials differ significantly, but agreement with the experimental rovibrational transition frequencies and rotational constants is very good regardless of which potential is used.

1.
C. C.
Carter
,
H.-S.
Lee
,
A. B.
McCoy
, and
T. A.
Miller
,
J. Mol. Struct.
525
,
1
(
2000
).
2.
H.-S.
Lee
,
A. B.
McCoy
,
R. R.
Toczyłowski
, and
S. M.
Cybulski
,
J. Chem. Phys.
113
,
5736
(
2000
).
3.
M.-C.
Yang
,
A. P.
Salzberg
,
B.-C.
Chang
,
C. C.
Carter
, and
T. A.
Miller
,
J. Chem. Phys.
98
,
4301
(
1993
).
4.
M.-C.
Yang
,
C. C.
Carter
, and
T. A.
Miller
,
J. Chem. Phys.
107
,
3437
(
1997
).
5.
C. C.
Carter
and
T. A.
Miller
,
J. Chem. Phys.
107
,
3447
(
1997
).
6.
B. E.
Applegate
,
M.-C.
Yang
, and
T. A.
Miller
,
J. Chem. Phys.
109
,
162
(
1998
).
7.
C. C.
Carter
,
T. A.
Miller
,
H.-S.
Lee
,
A. B.
McCoy
, and
E. F.
Hayes
,
J. Chem. Phys.
110
,
5065
(
1999
).
8.
M.-C.
Yang
,
C. C.
Carter
, and
T. A.
Miller
,
J. Chem. Phys.
110
,
7305
(
1999
).
9.
P. P.
Korambath
,
X. T.
Wu
,
E. F.
Hayes
,
C. C.
Carter
, and
T. A.
Miller
,
J. Chem. Phys.
107
,
3460
(
1997
).
10.
A. V.
Nemukhin
,
B. L.
Grigorenko
, and
A. A.
Granovsky
,
Chem. Phys. Lett.
301
,
287
(
1999
).
11.
A. B.
McCoy
,
J. Chem. Phys.
109
,
170
(
1998
).
12.
J. M.
Hutson
,
J. Chem. Phys.
96
,
6752
(
1992
).
13.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
14.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
112
,
3106
(
2000
).
15.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
16.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
17.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
18.
S. M.
Cybulski
and
R. R.
Toczyłowski
,
J. Chem. Phys.
111
,
10520
(
1999
).
19.
R. R.
Toczyłowski
and
S. M.
Cybulski
,
J. Chem. Phys.
112
,
4604
(
2000
).
20.
MOLPRO is a package of ab initio programs written by H.-J. Werner and and P. J. Knowles with contributions by R. D. Amos, A. Bernhardsson, A. Berning, P. Celani, D. L. Cooper, M. J. O. Deegan, A. J. Dobbyn, F. Eckert, C. Hampel, G. Hetzer, T. Korona, R. Lindh, A. W. Lloyd, S. J. McNicholas, F. R. Manby, W. Meyer, M. E. Mura, A. Nicklass, P. Palmieri, R. Pitzer, G. Rauhut, M. Schütz, H. Stoll, A. J. Stone, R. Tarroni, and T. Thorsteinsson.
21.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
22.
K. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).
23.
J. M.
Hutson
,
Adv. Mol. Vib. Collision Dyn.
1A
,
1
(
1991
).
24.
M.-L.
Dubernet
,
D.
Flower
, and
J. M.
Hutson
,
J. Chem. Phys.
94
,
7602
(
1991
).
25.
S. E.
Choi
and
J. C.
Light
,
J. Chem. Phys.
92
,
2129
(
1990
).
26.
M.
Yang
and
M. H.
Alexander
,
J. Chem. Phys.
103
,
3400
(
1995
).
27.
C. C.
Carter
,
T. A.
Miller
,
H.-S.
Lee
,
P. P.
Korambath
,
A. B.
McCoy
, and
E. F.
Hayes
,
J. Chem. Phys.
110
,
1508
(
1999
).
28.
H.-S.
Lee
,
A. B.
McCoy
,
L. B.
Harding
,
C. C.
Carter
, and
T. A.
Miller
,
J. Chem. Phys.
111
,
10053
(
1999
).
29.
D. C.
Sorensen
,
SIAM J. Matrix Anal. Appl.
13
,
357
(
1992
).
30.
X. T.
Wu
and
E. F.
Hayes
,
J. Comput. Chem.
130
,
136
(
1997
).
31.
W. L.
Meerts
and
A.
Dymanus
,
Can. J. Phys.
53
,
2123
(
1975
).
32.
D. T.
Colbert
and
W. H.
Miller
,
J. Chem. Phys.
96
,
1982
(
1992
).
33.
A list of the parameters and the FORTRAN codes used to evaluate the PESs can be obtained from the authors by sending an e-mail to [email protected].
This content is only available via PDF.
You do not currently have access to this content.