A complementary laser spectroscopy and computational study of the MAB(NH3)2–4 complexes, hereafter referred to by its stoichiometry, i.e., 1:2, 1:3, and 1:4, prepared in a supersonic expansion, is reported. Experimental evidence shows the existence of abundant fragmentation cascades, the most notorious being the observation of the 1:4 complex spectrum in the 1:3 and to 1:2 mass channels, in fact, the observed spectra of the 1:2 and 1:3 complexes are not genuine but a consequence of fragmentation. The observed 1:4 complex resonance enhanced multiphoton ionization (REMPI) spectrum has a significant redshift of −1160 cm−1 from the bare MAB 000 transition and appears over a noisy background that decreases, although it does not disappear, in resonance enhanced two-color photo ionization (R2PI) studies. “Hole burning” spectroscopy corroborates the presence of only one 1:4 isomer. Calculations at the B3LYP/6−31+G* level conduct to a number of 1:2, 1:3, and 1:4 stable isomer structures, the most stable being the 1:4 with a four ammonia chain coordinated to the NH2 group. The good agreement between calculated and experimental vibrational frequencies confirms the ammonia ring structure and allows us to assign a number of MAB(NH3)4 inter- and intramolecular vibrational bands.

1.
J. A.
Fernández
,
A.
Longarte
,
I.
Unamuno
, and
F.
Castaño
,
J. Chem. Phys.
113
,
8541
(
2000
), preceding paper.
2.
A.
Longarte
,
J. A.
Fernández
,
I.
Unamuno
, and
F.
Castaño
,
J. Chem. Phys.
112
,
3170
(
2000
).
3.
S.
Yee
,
S.
Fredericks
, and
K. D.
Jordan
,
J. Phys. Chem.
100
,
7810
(
1996
).
4.
R. N.
Pribble
and
T. S.
Zwier
,
Science
265
,
75
(
1994
).
5.
K.
Kim
,
K. D.
Jordan
, and
T. S.
Zwier
,
J. Am. Chem. Soc.
116
,
11568
(
1994
).
6.
(a)
A.
Berces
and
T.
Ziegler
,
J. Chem. Phys.
98
,
4793
(
1993
);
(b)
B. G.
Johnson
,
P. M.
Gill
, and
J. A.
Pople
,
J. Chem. Phys.
98
,
5612
(
1993
);
(c)
N. C.
Handy
,
C. N.
Murray
, and
R. D.
Amos
,
J. Phys. Chem.
97
,
4392
(
1993
).
7.
A.
Longarte
,
J. A.
Fernández
,
I.
Unamuno
, and
F.
Castaño
,
Chem. Phys. Lett.
308
,
516
(
1999
).
8.
(a)
G.
Rauhut
and
P.
Pulay
,
J. Phys. Chem.
99
,
3093
(
1995
);
(b) R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
9.
GAUSSIAN 98, Revision A. 7, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA (1998).
10.
(a)
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
);
(b)
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
11.
S.
Li
and
E. R.
Bernstein
,
J. Chem. Phys.
97
,
804
(
1992
).
12.
M.
Satta
,
A.
Latini
,
S.
Piccirillo
,
T. M.
Di Palma
,
M.
Scuderi
,
M.
Sperenza
, and
A.
Giardini
,
Chem. Phys. Lett.
316
,
94
(
2000
).
13.
S. R.
Haines
,
C. E. H.
Dessent
, and
K. J.
Müller-Dethlefs
,
J. Chem. Phys.
111
,
1947
(
1999
).
14.
A. G.
Taylor
,
A. C.
Jones
, and
D.
Phillips
,
Chem. Phys. Lett.
169
,
17
(
1990
).
15.
A. G.
Taylor
,
A. C.
Jones
,
A. R.
Auty
, and
D.
Phillips
,
Chem. Phys. Lett.
131
,
534
(
1986
).
16.
O.
Chesnovsky
and
S.
Leutwyler
,
J. Chem. Phys.
88
,
4127
(
1988
).
17.
A.
Bach
and
S.
Leutwyler
,
Chem. Phys. Lett.
299
,
381
(
1999
).
18.
G. A. Jeffrey, An Introduction to Hydrogen Bonding (Oxford University Press, New York, 1997).
19.
T.
Bürgi
,
M.
Schütz
, and
S.
Leutwyler
,
J. Chem. Phys.
103
,
6350
(
1995
).
20.
S.
Tanabe
,
T.
Ebata
,
M.
Fujii
, and
N.
Mikami
,
Chem. Phys. Lett.
215
,
347
(
1993
).
21.
R. J.
Stanley
and
A. W.
Castelman
, Jr.
,
J. Chem. Phys.
94
,
7744
(
1991
).
22.
R. J.
Lipert
and
S.
Colson
,
J. Chem. Phys.
89
,
4579
(
1988
).
23.
A.
Sur
and
P. M.
Johnson
,
J. Chem. Phys.
84
,
1206
(
1986
).
24.
(a)
B. D.
Howells
,
J.
McCombie
,
T. F.
Palmer
,
J. P.
Simons
, and
A.
Walters
,
J. Chem. Soc., Faraday Trans.
88
,
2595
(
1992
);
(b)
B. D.
Howells
,
J.
McCombie
,
T. F.
Palmer
,
J. P.
Simons
, and
A.
Walters
,
J. Chem. Soc., Faraday Trans.
88
,
2603
(
1992
).
25.
J. A.
Fernández
and
E. R.
Bernstein
,
J. Chem. Phys.
106
,
3029
(
1997
).
26.
S. J.
Humphrey
and
D. W.
Pratt
,
J. Chem. Phys.
106
,
908
(
1997
).
27.
A.
Fedorov
and
J. R.
Cable
,
J. Phys. Chem.
104
,
4943
(
2000
).
28.
F. M.
Tao
and
W.
Klemperer
,
J. Chem. Phys.
99
,
5976
(
1993
).
29.
D. M.
Hasset
,
C. J.
Marsden
, and
B. J.
Smith
,
Chem. Phys. Lett.
44
,
183
(
1991
).
30.
H. Meyer, Ph. D. thesis, Max-Planck Institut für Stroemungsforschung, Göttingen, 1984.
31.
E.
Honegger
,
R.
Bombatch
, and
S.
Leutwyler
,
J. Chem. Phys.
85
,
1234
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.