The vacuum ultraviolet (VUV) pulsed field ionization–photoelectron (PFI–PE) spectra for CO2 have been measured in the energy range of 17.2–19.0 eV, showing complex vibronic structures for the CO2+(A 2Πuand B 2Σu+) states. The PFI–PE spectra for CO2+(A 2Πuand B 2Σu+) are dominated by the v1+ (symmetric stretching) vibrational progressions, and weak bands due to excitation of both even and odd quanta of the v2+ (bending) and v3+ (antisymmetric stretching) modes are observed in the VUV–PFI–PE spectra. The simulation of rotational contours resolved in the PFI–PE vibronic bands associated with excitation to CO2+(A 2Π3/2,1/2u;v1+=0–5,v2+=0,v3+=0) and CO2+(B 2Σu+;0,0,0) has yielded accurate ionization energies for the formation of these states from CO2(X 1Σg+). Three-dimensional potential energy functions (PEFs) for CO2+(B 2Σu+) have also been generated theoretically using the complete active space self-consistent field and internally contracted multireference configuration interaction methods. Based on these PEFs, vibrational energy levels for CO2+(B 2Σu+), together with the Franck–Condon factors for their formation from CO2(X 1Σg+), have been calculated. With the guide of these theoretical predictions, the vibrational bands resolved in the PFI–PE spectrum for CO2+(B 2Σu+) have been satisfactorily assigned. This assignment reveals the nature of many vibrational PFI–PE bands as originated from anharmonic resonance interactions and members of Fermi polyads.

1.
D.
Gauyacq
,
M.
Horani
,
S.
Leach
, and
J.
Rostas
,
Can. J. Phys.
53
,
2040
(
1975
).
2.
D.
Gauyacq
,
C.
Larcher
, and
J.
Rostas
,
Can. J. Phys.
57
,
1634
(
1979
).
3.
J.
Rostas
and
R. P.
Tuckett
,
J. Mol. Spectrosc.
96
,
77
(
1982
).
4.
T. J.
Sears
,
Mol. Phys.
59
,
259
(
1986
).
5.
C.
Cossart-Magos
,
M.
Jungen
, and
F.
Launay
,
Mol. Phys.
61
,
1077
(
1987
).
6.
M. A.
Johnson
and
J.
Rostas
,
Mol. Phys.
85
,
839
(
1995
).
7.
J. H. D.
Eland
and
C. J.
Danby
,
Int. J. Mass Spectrom. Ion Phys.
1
,
111
(
1968
).
8.
C. R.
Brundle
and
D. W.
Turner
,
Int. J. Mass Spectrom. Ion Phys.
2
,
195
(
1969
).
9.
J. L.
Gardner
and
J. A. R.
Samson
,
J. Electron Spectrosc. Relat. Phenom.
2
,
259
(
1973
).
10.
A. W.
Potts
and
G. H.
Fattahallah
,
J. Phys. B
13
,
2545
(
1980
).
11.
I.
Reineck
et al.,
Chem. Phys.
78
,
311
(
1983
).
12.
B.
Kovač
,
J. Chem. Phys.
78
,
1684
(
1983
).
13.
B.
Wannberg
et al.,
J. Phys. B
17
,
L259
(
1984
).
14.
H.
Veenhuizen
et al.,
J. Electron Spectrosc. Relat. Phenom.
41
,
205
(
1986
).
15.
L.-S.
Wang
,
J. E.
Reutt
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Electron Spectrosc. Relat. Phenom.
47
,
167
(
1988
).
16.
P.
Baltzer
et al.,
J. Chem. Phys.
104
,
8922
(
1996
).
17.
C. F.
Battern
,
J. A.
Taylor
, and
G. G.
Meisels
,
J. Chem. Phys.
65
,
3316
(
1976
).
18.
T.
Baer
and
P. M.
Guyon
,
J. Chem. Phys.
85
,
4765
(
1986
).
19.
K. E.
McCulloh
,
J. Chem. Phys.
59
,
4250
(
1973
).
20.
R.
Frey
et al.,
Chem. Phys.
21
,
89
(
1977
).
21.
J. H. D.
Eland
and
J.
Berkowitz
,
J. Chem. Phys.
67
,
2782
(
1977
).
22.
H. H.
Fielding
and
T. P.
Softley
,
Chem. Phys.
155
,
257
(
1991
).
23.
F.
Merkt
,
S. R.
Mackenzie
,
R. J.
Rednall
, and
T. P.
Softley
,
J. Chem. Phys.
99
,
8430
(
1993
).
24.
R. T.
Wiedmann
,
M. G.
White
,
H.
Lefebvre-Brion
, and
C.
Cossart-Magos
,
J. Chem. Phys.
103
,
10417
(
1995
).
25.
J.
Liu
et al.
,
J. Chem. Phys.
112
,
10767
(
2000
).
26.
C.-W.
Hsu
,
M.
Evans
,
P.
Heimann
,
K.-T.
Lu
, and
C. Y.
Ng
,
J. Chem. Phys.
105
,
3950
(
1996
).
27.
P.
Heimann
et al.,
Rev. Sci. Instrum.
68
,
1945
(
1997
).
28.
C.-W.
Hsu
,
M.
Evans
,
C. Y.
Ng
, and
P.
Heimann
,
Rev. Sci. Instrum.
68
,
1694
(
1997
).
29.
R. B.
Carirns
and
J. A. R.
Samson
,
J. Opt. Soc. Am.
56
,
1568
(
1966
).
30.
C.-W.
Hsu
,
M.
Evans
,
S.
Stimson
,
C. Y.
Ng
, and
P.
Heimann
,
Chem. Phys.
231
,
121
(
1998
).
31.
S.
Stimson
et al.,
Chem. Phys. Lett.
289
,
507
(
1998
).
32.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
33.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
34.
P. J.
Knowles
and
H.-J.
Knowles
,
Chem. Phys. Lett.
145
,
514
(
1988
).
35.
T. H.
Dunning
,
J. Chem. Phys.
90
,
1007
(
1989
).
36.
R.
Polak
,
M.
Hochlaf
,
M.
Levinas
,
G.
Chambaud
, and
P.
Rosmus
,
Spectrochim. Acta A
55
,
447
(
1999
).
37.
MOLPRO is a package of ab initio programs written by H. J. Werner and P. J. Knowles with contributions from R. D. Amos, A. Berning, D. L. Cooper, M. J. O. Deagan, A. J. Dobbyn, F. Eckert, C. Hampel, T. Leininger, R. Lindh, A. W. Loyd, W. Meyer, M. E. Mura, A. Niclass, P. Palmieri, K. Peterson, R. Pitzer, P. Pulay, G. Rauhut, M. Schuetz, H. Stoll, A. J. Stone, and T. Thorsteinsson. For further details, see http://www.tc.bham.ac.uk/molpro.
38.
S.
Carter
and
N. C.
Handy
,
Mol. Phys.
52
,
1367
(
1984
).
39.
S.
Stimson
et al.,
J. Chem. Phys.
108
,
6205
(
1998
).
40.
M.
Brommer
et al.,
J. Chem. Phys.
94
,
8070
(
1991
).
41.
M.
Brommer
and
P.
Rosmus
,
J. Chem. Phys.
98
,
7746
(
1993
).
42.
H.
Gritli
,
G.
Chambaud
,
M.
Brommer
, and
P.
Rosmus
,
J. Chim. Phys. Phys.-Chim. Biol.
91
,
151
(
1994
).
43.
A. D.
Buckingham
,
B. J.
Orr
, and
J. M.
Sichel
,
Philos. Trans. R. Soc. London, Ser. A
268
,
147
(
1970
).
44.
G. Herzberg, Molecular Spectra and Molecular Structure I, Spectra of Diatomic Molecules (Van Nostrand, Princeton, NJ, 1950).
45.
G. Herzberg, Molecular Spectra and Molecular Structure III, Electronic Spectra and Electronic Structure of Polyatomic Molecules (van Nostrand, Princeton, NJ, 1966).
46.
H.
Lefebvre-Brion
,
A.
Giusti-Suzor
, and
G.
Raseev
,
J. Chem. Phys.
83
,
1557
(
1985
).
47.
F.
Merkt
and
T. P.
Softley
,
Int. Rev. Phys. Chem.
12
,
205
(
1993
).
48.
R.
Renner
,
Z. Phys.
92
,
172
(
1934
).
49.
T. E.
Sharp
and
H. M.
Rosenstock
,
J. Chem. Phys.
41
,
3453
(
1964
).
50.
M.
Evans
,
S.
Stimson
,
C. Y.
Ng
,
C.-W.
Hsu
, and
G. K.
Jarvis
,
J. Chem. Phys.
110
,
315
(
1999
).
51.
Y.
Song
,
M.
Evans
,
C. Y.
Ng
,
C.-W.
Hsu
, and
G. K.
Jarvis
,
J. Chem. Phys.
111
,
1905
(
1999
).
52.
G. K.
Jarvis
,
M.
Evans
,
C. Y.
Ng
, and
K.
Mitsuke
,
J. Chem. Phys.
111
,
3058
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.