The photodissociation of 1,2 dibromo-tetrafluoroethane (Halon-2402) has been investigated at 193 nm using photofragment translational spectroscopy with vacuum ultraviolet ionization and at 193, 233, and 266 nm using state-selected translational spectroscopy with resonance-enhanced multiphoton ionization. The product branching ratios, angular distributions, and translational energy distributions were measured at these wavelengths, providing insight into the ultraviolet photodissociation dynamics of CF2BrCF2Br. The total bromine atom quantum yields were found to be 1.9±0.1 at both 193 and 233 nm and 1.4±0.1 at 266 nm. The first C–Br bond dissociation energy was determined to be 69.3 kcal/mol from ab initio calculations. The second C–Br bond dissociation energy was determined to be 16±2 kcal/mol by modeling of the bromine quantum yield. In addition, variational Rice–Ramsperger–Kassel–Marcus theory was used to calculate the secondary dissociation rates for a range of dissociation energies above threshold. These results suggest that CF2CF2Br photofragments with sufficient internal energies will undergo secondary dissociation prior to collisional stabilization under atmospheric conditions. Based on the measured translational energy distributions and product branching ratios, a model is proposed to describe the wavelength-dependent bromine quantum yield and the implications of these results to atmospheric chemistry are discussed.

1.
M. J.
Molina
and
F. S.
Rowland
,
Nature (London)
248
,
810
(
1974
).
2.
S.
Solomon
,
M.
Mills
,
L. E.
Heidt
,
W. H.
Pollock
, and
A. F.
Tuck
,
J. Geophys. Res., [Space Phys.]
97
,
25
(
1992
).
3.
R. R.
Garcia
and
S.
Solomon
,
J. Geophys. Res., [Space Phys.]
99
,
12937
(
1994
).
4.
S. M.
Schauffler
,
L. E.
Heidt
,
W. H.
Pollack
,
T. M.
Gilpin
,
J. F.
Vedder
,
S.
Solomon
,
R. A.
Leub
, and
E. L.
Atlas
,
Geophys. Res. Lett.
20
,
2567
(
1993
).
5.
J. B.
Burkholder
,
R. R.
Wilson
,
T.
Gierczak
,
E.
Talukdar
,
S. A.
McKeen
,
J. J.
Orlando
,
G. L.
Vaghjiani
, and
A. R.
Ravishankara
,
J. Geophys. Res., [Space Phys.]
96
,
5025
(
1991
).
6.
L. T.
Molina
,
M. J.
Molina
, and
F. S.
Rowland
,
J. Phys. Chem.
86
,
2672
(
1982
).
7.
S. W.
Benson
,
J. Chem. Educ.
42
,
502
(
1973
).
8.
X.
Yang
,
D. A.
Blank
,
J.
Lin
,
P. A.
Heimann
,
A. M.
Wodtke
,
A.
Suits
, and
Y. T.
Lee
,
Rev. Sci. Instrum.
68
,
3317
(
1997
).
9.
M.
Koike
,
P. A.
Heimann
,
A. H.
Kung
,
T.
Namioka
,
R.
DiGennaro
,
B.
Gee
, and
N.
Yu
,
Nucl. Instrum. Methods Phys. Res. A
347
,
282
(
1994
);
P. A.
Heimann
,
M.
Koike
,
C. W.
Hsu
,
M.
Evans
,
C. Y.
Ng
,
D.
Blank
,
X. M.
Yang
,
C.
Flaim
,
A. G.
Suits
, and
Y. T.
Lee
,
Proc. SPIE
9
,
2865
(
1996
).
10.
W. S.
McGivern
,
R.
Li
,
P.
Zou
, and
S. W.
North
,
J. Chem. Phys.
111
,
5771
(
1999
).
11.
W. S.
McGivern
,
R.
Li
,
P.
Zou
,
T.
Nguyen
, and
S. W.
North
,
Chem. Phys.
249
,
237
(
1999
).
12.
S.
Arepalli
,
N. N.
Presser
,
D.
Robie
, and
R. J.
Gordon
,
Chem. Phys. Lett.
117
,
64
(
1985
).
13.
W. C.
Wiley
and
I. H.
McLaren
,
Rev. Sci. Instrum.
26
,
1150
(
1955
).
14.
H. J.
Hwang
,
J.
Griffiths
, and
M. A.
El-Sayed
,
Int. J. Mass Spectrom. Ion Processes
131
,
265
(
1994
).
15.
R.
Ogorzalek Loo
,
G. E.
Hall
,
H.-P.
Haerri
, and
P. L.
Houston
,
J. Phys. Chem.
92
,
5
(
1988
);
R.
Ogorzalek Loo
,
H.-P.
Haerri
,
G. E.
Hall
, and
P. L.
Houston
,
J. Chem. Phys.
90
,
4222
(
1989
).
16.
J. A.
Syage
,
J. Chem. Phys.
105
,
1007
(
1996
).
17.
P.
Zou
,
W. S.
MeGivern
, and
S. W.
North
,
Phys. Chem. Chem. Phys.
2
,
3785
(
2000
).
18.
A. M. Wodtke, Ph.D. thesis, University of California, Berkeley, 1986;
X. Zhao, Ph.D. thesis, University of California, Berkeley, 1989.
19.
S. W.
North
,
D. A.
Blank
,
J. D.
Gezelter
,
C. A.
Longfellow
, and
Y. T.
Lee
,
J. Chem. Phys.
102
,
4447
(
1995
);
S. W.
North
,
D. A.
Blank
, and
Y. T.
Lee
,
Chem. Phys. Lett.
224
,
38
(
1994
);
P. M.
Kroger
and
S. J.
Riley
,
J. Chem. Phys.
67
,
4483
(
1977
).
20.
E. J.
Hinsta
,
X.
Zhao
, and
Y. T.
Lee
,
J. Chem. Phys.
92
,
2280
(
1990
).
21.
K.
Bergman
,
R. T.
Carter
,
G. E.
Hall
, and
J. R.
Huber
,
J. Chem. Phys.
109
,
474
(
1998
).
22.
R. N.
Zare
,
Mol. Photochem.
4
,
1
(
1972
).
23.
R. N.
Dixon
,
J. Chem. Phys.
85
,
1866
(
1986
).
24.
GAUSSIAN 98, revision A.6, M. J. Frisch, G. W. Trucks, H. B. Schlegel et al., Gaussian, Inc., Pittsburgh, Pennsylvania, 1998.
25.
W. S.
McGivern
,
A.
Derecskei-Kovacs
,
S. W.
North
, and
J. S.
Francisco
,
J. Phys. Chem. A
104
,
436
(
2000
).
26.
M. W.
Chase
, Jr.
, NIST-JANAF Thermochemical Tables, 4th ed.
J. Phys. Chem. Ref. Data, Monogr.
9
,
1
(
1998
).
27.
H. V.
Wartenberg
and
J. Z.
Schiefer
,
Anorg. Chem.
278
,
326
(
1955
).
28.
V. P.
Kolesov
,
I. D.
Zenkov
, and
S. M.
Skuratov
,
Russ. J. Phys. Chem. (Engl. Transl.)
36
,
45
(
1962
);
C. A.
Neugebauer
and
J. L.
Margrave
,
J. Phys. Chem.
60
,
1318
(
1956
).
29.
F. W.
Kirbride
and
F. G.
Davidson
,
Nature (London)
174
,
174
(
1954
).
30.
D.
Krajnovich
,
L. J.
Butler
, and
Y. T.
Lee
,
J. Chem. Phys.
81
,
3031
(
1984
).
31.
G. M.
Nathanson
,
T. K.
Minton
,
S. F.
Shane
, and
Y. T.
Lee
,
J. Chem. Phys.
90
,
6157
(
1989
).
32.
E.-C.
Wu
and
A. S.
Rogers
,
J. Am. Chem. Soc.
98
,
6112
(
1976
).
33.
K. A. Holbrook, M. J. Pilling, and S. H. Robertson, Unimolecular Reactions, 2nd ed. (Wiley Interscience, New York, 1996);
W. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973).
34.
W. L.
Hase
,
Chem. Phys. Lett.
139
,
389
(
1987
).
35.
A. S.
Sudbo
,
P. A.
Schultz
,
E. R.
Grant
,
Y. R.
Shen
, and
Y. T.
Lee
,
J. Chem. Phys.
70
,
912
(
1979
).
36.
G. E.
Busch
and
K. R.
Wilson
,
J. Chem. Phys.
56
,
3639
(
1972
).
37.
R. S.
Mulliken
,
Phys. Rev.
61
,
277
(
1942
).
38.
T.
Gougousi
,
P. C.
Samartzis
, and
T. N.
Kitsopolous
,
J. Chem. Phys.
108
,
5742
(
1998
).
39.
A.
Gedanken
nad
M. D.
Rowe
,
Chem. Phys. Lett.
34
,
39
(
1974
).
40.
J. T.
Muckerman
,
J. Phys. Chem.
93
,
179
(
1989
).
41.
J. L.
Knee
,
L. R.
Khundkar
, and
A. H.
Zewail
,
J. Chem. Phys.
83
,
1996
(
1985
).
42.
L. R.
Khundkar
and
A. H.
Zewail
,
J. Chem. Phys.
92
,
231
(
1989
).
43.
Based on translational energy distributions of the form P(E)=Emax[f Ea(1−fE)b]. We find that values of 10 for both parameters a and b, respectively, reproduce the experimental distributions.
44.
G. P. Brasseur, J. J. Orlando, and G. S. Tyndal, Atmospheric Chemistry and Global Change (Oxford University Press, New York, 1999).
45.
G.
Acerboni
,
N. R.
Jensen
,
B.
Rindone
, and
J.
Hjorth
,
Chem. Phys. Lett.
309
,
364
(
1999
).
46.
T. E.
Mogelberg
,
J.
Sehested
,
O. J.
Nielsen
, and
T. J.
Wallington
,
J. Phys. Chem.
99
,
16932
(
1995
).
47.
J.
Sehested
,
T.
Ellermann
,
O. J.
Nielsen
,
T. J.
Wallington
, and
M. D.
Hurley
,
Int. J. Chem. Kinet.
25
,
701
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.