Three novel nonlinear parameter estimators are devised and implemented for accurate and fast processing of experimentally measured or theoretically generated time signals of arbitrary length. The new techniques can also be used as powerful tools for diagonalization of large matrices that are customarily encountered in quantum chemistry and elsewhere. The key to the success and the common denominator of the proposed methods is a considerably reduced dimensionality of the original data matrix. This is achieved in a preprocessing stage called beamspace windowing or band-limited decimation. The methods are decimated signal diagonalization (DSD), decimated linear predictor (DLP), and decimated Padé approximant (DPA). Their mutual equivalence is shown for the signals that are modeled by a linear combination of time-dependent damped exponentials with stationary amplitudes. The ability to obtain all the peak parameters first and construct the required spectra afterwards enables the present methods to phase correct the absorption mode. Additionally, a new noise reduction technique, based upon the stabilization method from resonance scattering theory, is proposed. The results obtained using both synthesized and experimental time signals show that DSD/DLP/DPA exhibit an enhanced resolution power relative to the standard fast Fourier transform. Of the three methods, DPA is found to be the most efficient computationally.

1.
Dž.
Belkić
,
P. A.
Dando
,
H. S.
Taylor
, and
J.
Main
,
Chem. Phys. Lett.
315
,
135
(
1999
).
2.
H. Guo (private communication);
G.
Ma
and
H.
Guo
,
J. Chem. Phys.
111
,
4032
(
1999
).
3.
M. R.
Wall
and
D.
Neuhauser
,
J. Chem. Phys.
102
,
8011
(
1995
).
4.
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
107
,
6756
(
1997
);
V. A.
Mandelshtam
and
H. S.
Taylor
,
J. Chem. Phys.
109
,
4128
(
1998
) (erratum).
5.
J.
Main
,
P. A.
Dando
,
Dž.
Belkić
, and
H. S.
Taylor
,
J. Phys. A
33
,
1247
(
2000
).
6.
Dž. Belkić, P. A. Dando, J. Main, and H. S. Taylor, J. Phys. Chem. A (submitted).
7.
S.
Guan
and
A. G.
Marshall
,
Anal. Chem.
69
,
1156
(
1997
).
8.
S.K.
Shin
and
S.-J.
Han
,
Int. J. Mass Spectrom. Ion Processes
153
,
87
(
1996
);
S.K.
Shin
and
S.-J.
Han
,
J. Am. Soc. Mass Spectrom.
8
,
86
(
1997
);
S.K. Shin (private communication).
9.
S. D.
Silverstein
and
M. D.
Zoltowski
,
Digital Signal Processing
1
,
161
(
1991
).
10.
S. L. Marple, Jr., Digital Spectral Analysis with Applications (Prentice–Hall, Englewood Cliffs, NJ, 1987).
11.
G. A. Baker, Essentials of Padé Approximants (Academic, New York, 1975).
12.
E. J.
Weniger
,
Comput. Phys. Rep.
10
,
189
(
1989
).
13.
J.
Main
,
P. A.
Dando
,
Dž.
Belkić
, and
H. S.
Taylor
,
Europhys. Lett.
48
,
250
(
1999
).
14.
Dž.
Belkić
,
J. Phys. A
22
,
3003
(
1989
).
15.
NAG FORTRAN Library, Numerical Algorithms Group, 256 Banbury Road, Oxford OX2 7DE, UK.
16.
IMSL Math/Library Users Manuel, International Mathematical Statistical Library, IMSL Inc., 2500 CityWest Boulevard, Houston TX 77042.
17.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).
18.
A.
Hazi
and
H. S.
Taylor
,
Phys. Rev. A
1
,
1109
(
1970
).
19.
V. A.
Mandelshtam
,
T. R.
Ravuri
, and
H. S.
Taylor
,
J. Chem. Phys.
101
,
8792
(
1994
).
20.
S. D.-H.
Shi
,
C. L.
Hendrikson
, and
A. G.
Marshall
,
Proc. Natl. Acad. Sci. USA
95
,
11532
(
1998
).
21.
M. Palmblad, H. Önnerud, K. Håkansson, and J. Axelsson, International Conference of the American Society of Mass Spectrometry, Dallas, TX, 1998); Session CD.
22.
A. Kershaw (private communication).
23.
P. A. Dando, Dž. Belkić, J. Main, and H. S. Taylor (unpublished).
This content is only available via PDF.
You do not currently have access to this content.