In this paper the ab initio potential of mean force for the formic acid–water system is calculated in a Monte Carlo simulation using a classical fluctuating charge molecular mechanics potential to guide Monte Carlo updates. The ab initio energies in the simulation are calculated using density-functional theory (DFT) methods recently developed by Salahub et al. [J. Chem. Phys. 107, 6770 (1997)] to describe hydrogen-bonded systems. Importance sampling methods are used to investigate structural changes and it is demonstrated that using a molecular mechanics importance function can improve the efficiency of a DFT simulation by several orders of magnitude. Monte Carlo simulation of the system in a canonical ensemble at T=300 K reveals two chemical processes at intermediate time scales: The rotation of the H2O bonded to HCOOH, which takes place on a time scale of 3 ps, and the dissociation of the complex which occurs in 24 ps. It is shown that these are the only important structural “reactions” in the formic acid–water cluster which take place on a time scale shorter than the double transfer of the proton.

1.
S.
Sirois
,
E. I.
Proynov
,
D. T.
Nguyen
, and
D. R.
Salahub
,
J. Chem. Phys.
107
,
6770
(
1997
);
E. I.
Proynov
,
S.
Sirois
, and
D. R.
Salahub
,
Int. J. Quantum Chem.
64
,
427
(
1997
).
2.
For details on the deMon quantum chemistry package, see http://www.cerca.umontreal.ca/deMon/Welcom_f.html.
3.
K.
Laasonen
,
M.
Sprik
,
M.
Parrinello
, and
R.
Car
,
J. Chem. Phys.
99
,
9080
(
1993
).
4.
G. M.
Torrie
and
J. P.
Valleau
,
Chem. Phys. Lett.
28
,
578
(
1974
).
5.
A.
Gelman
and
X. L.
Meng
,
Stat. Sci.
13
,
163
(
1998
).
6.
C. J.
Geyer
and
E. A.
Thompson
,
J. Am. Stat. Assoc.
90
,
909
(
1995
).
7.
S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, 1st ed. (McGraw-Hill, New York and London, 1941).
8.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
9.
H.
Mori
,
Prog. Theor. Phys.
33
,
423
(
1965
);
R.
Zwanzig
,
Phys. Rev.
124
,
983
(
1961
).
10.
H.
Eyring
,
J. Chem. Phys.
3
,
107
(
1935
).
11.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
).
12.
K. E. Iverson, A Programming Language (Wiley, New York, 1962), p. 11;
see also
D. E.
Knuth
,
Am. Math. Monthly
99
,
403
(
1992
).
13.
G. S. Fishman, Monte Carlo (Springer, New York, 1996).
14.
Markov Chain Monte Carlo in Practice, edited by W. R. Gilks, S. Richardson, and D. J. Spiegelhalter (Chapman and Hall, London, 1996).
15.
R. M. Neal, Technical Report No. 9722, Department of Statistics, University of Toronto, 1997.
16.
R. M. Neal, Technical Report No. 9508, Department of Statistics, University of Toronto, 1995.
17.
S.
Duane
,
A. D.
Kennedy
,
B. J.
Pendleton
, and
D.
Roweth
,
Phys. Lett. B
195
,
216
(
1987
).
18.
R. M.
Neal
,
J. Comput. Phys.
111
,
194
(
1994
).
19.
G. Ciccotti and M. Ferrario, in Classical and Quantum Dynamics in Condensed Phase Simulations, edited by B. J. Berne, G. Ciccotti, and D. F. Coker (World Scientific, Singapore, 1997).
20.
M.
Tuckerman
,
B. J.
Berne
, and
G. J.
Martyna
,
J. Chem. Phys.
97
,
1990
(
1992
).
21.
P. Bratley, B. L. Fox, and L. E. Schrage, A Guide to Simulation (Springer, New York, 1987).
22.
V.
Barone
and
C.
Adamo
,
J. Chem. Phys.
105
,
11007
(
1996
).
23.
E. I.
Proynov
,
A.
Vela
, and
D. R.
Salahub
,
Chem. Phys. Lett.
230
,
419
(
1994
);
E. I.
Proynov
,
A.
Vela
, and
D. R.
Salahub
,
Chem. Phys. Lett.
234
,
462
(E) (
1995
).
24.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1998
).
25.
J. P. Perdew, in Electronic Structure of Solids, edited by P. Ziesche and H. Eschrig (Academic, Berlin, 1991).
26.
J. F. Truchon, D. Wei, and D. R. Salahub (in preparation).
27.
A.
Fernandez-Ramos
,
Z.
Smedarchina
,
W.
Siebrand
,
M. Z.
Zgierski
, and
M. A.
Rios
,
J. Am. Chem. Soc.
121
,
6280
(
1999
).
28.
Z.
Smedarchina
,
W.
Siebrand
,
A.
Fernandez-Ramos
,
L.
Gorb
, and
J.
Leszczynski
,
J. Chem. Phys.
112
,
566
(
2000
).
29.
J. Kolafa, PROSIS project developed at the Center for Applied Mathematics, Odense University, Denmark.
30.
A. R. Leach, Molecular Modeling (Longman, Singapore, 1996).
31.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
32.
P.
Itskowitz
and
M. L.
Berkowitz
,
J. Phys. Chem. A
101
,
5687
(
1997
).
33.
Bakowies
and
Thiel
,
J. Comp. Chem.
17
, No.
1
,
88
(
1996
).
34.
F. H.
Stillinger
and
A.
Rahman
,
J. Chem. Phys.
60
,
1545
(
1974
).
35.
J.
Bentzien
,
R. P.
Muller
,
J.
Florian
, and
A.
Warshel
,
J. Phys. Chem. B
102
,
2293
(
1998
).
36.
D. E.
Sagnella
and
M. E.
Tuckerman
,
J. Chem. Phys.
108
,
2073
(
1998
).
37.
G. O. Roberts, A. Gelman, and W. R. Gilks, Research Rep. No. 94-16, Statistical Laboratory, University of Cambridge.
38.
S. Opps and J. Schofield (in preparation).
This content is only available via PDF.
You do not currently have access to this content.