This paper addresses one of the fundamental questions in the theory of hard-disk packings—how order within a system relates to packing density. The algorithm presented is a seed-based, growth protocol in which new disks are added sequentially to the surface of a growing cluster. The angular position of the new disk is chosen based on the minimization of an objective function designed to control order, as measured by the global bond-orientational order parameter ψ6, which varies between 0 and 1 (with 1 indicating perfect hexagonal close-packed order). Modifying the objective function allows the final packing fraction to be biased while maintaining tight control over ψ6. Inside of the range 0⩽ψ6⩽0.70, the targeted order parameter ψ6 is achieved to within two decimal places of accuracy. Furthermore, it is found that random structures 6∼0.01) can be generated with packing fractions in the range 0.40⩽η⩽0.77. Interestingly, the algorithm can produce nonequilibrium hard-disk configurations that are considerably more disordered than those typical of the equilibrium fluid.

1.
B. J.
Alder
and
T. E.
Wainwright
,
J. Chem. Phys.
33
,
1439
(
1960
).
2.
F. H.
Stillinger
,
E. A.
DiMarzio
, and
R. L.
Kornegay
,
J. Chem. Phys.
40
,
1564
(
1964
).
3.
B. D.
Lubachevsky
and
F. H.
Stillinger
,
J. Stat. Phys.
60
,
561
(
1990
).
4.
B. D.
Lubachevsky
,
F. H.
Stillinger
, and
E. N.
Pinson
,
J. Stat. Phys.
64
,
501
(
1991
).
5.
R. J.
Speedy
,
J. Phys.: Condens. Matter
10
,
4185
(
1998
).
6.
A. P.
Gast
and
W. B.
Russel
,
Phys. Today
51
,
24
(
1998
).
7.
A.
Mehta
and
G. C.
Barker
,
Phys. Rev. Lett.
67
,
394
(
1991
).
8.
B. A.
Cornell
,
J.
Middlehurst
, and
N. S.
Parker
,
J. Colloid Interface Sci.
81
,
280
(
1981
).
9.
H.
Reiss
,
J. Phys. Chem.
96
,
4736
(
1992
).
10.
S.
Torquato
,
T. M.
Truskett
, and
P. G.
Debenedetti
,
Phys. Rev. Lett.
84
,
2064
(
2000
).
11.
G. D.
Scott
and
D. M.
Kilgour
,
Br. J. Appl. Phys.
2
,
863
(
1969
).
12.
W. M.
Visscher
,
Nature (London)
239
,
504
(
1972
).
13.
W. S.
Jodrey
and
E. M.
Tory
,
Phys. Rev. A
32
,
2347
(
1985
).
14.
D. J.
Adams
and
A. J.
Matheson
,
J. Chem. Phys.
56
,
1989
(
1972
).
15.
G. D.
Scott
,
Nature (London)
194
,
956
(
1962
).
16.
J. L.
Finney
,
Proc. R. Soc. London, Ser. A
319
,
479
(
1970
).
17.
C. H.
Bennett
,
J. Appl. Phys.
43
,
2727
(
1972
).
18.
A. Z.
Zinchenko
,
J. Comput. Phys.
114
,
298
(
1994
).
19.
J. M.
Kosterlitz
and
D. J.
Thouless
,
J. Phys. Chem.
6
,
1181
(
1973
).
20.
B. I.
Halperin
and
D. R.
Nelson
,
Phys. Rev. Lett.
41
,
121
(
1978
).
21.
D. R.
Nelson
and
B. I.
Halperin
,
Phys. Rev. B
19
,
2456
(
1979
).
22.
A. P.
Young
,
Phys. Rev. B
19
,
1855
(
1979
).
23.
A. Okabe, B. Boots, and K. Sugihara, Spatial Tessellations (Wiley, New York, 1992).
24.
P. J.
Steinhardt
,
D. R.
Nelson
, and
M.
Ronchetti
,
Phys. Rev. B
28
,
784
(
1983
).
25.
T. I.
Quickenden
and
G. K.
Tan
,
J. Colloid Interface Sci.
48
,
382
(
1974
).
26.
G. C.
Barker
and
A.
Mehta
,
Phys. Rev. A
45
,
3435
(
1992
).
27.
This is consistent with the recent identification of a structural precursor to the freezing transition in the hard-disk system [
T. M.
Truskett
,
S.
Torquato
,
S.
Sastry
,
P. G.
Debenedetti
, and
F. H.
Stillinger
,
Phys. Rev. E
58
,
3083
(
1998
)].
28.
M. Eden, in Proceedings of the 4th Berkeley Symposium on Mathematical Statistics and Probability 4 (University of California Press, Berkeley, CA, 1961).
29.
T. M.
Truskett
,
S.
Torquato
, and
P. G.
Debenedetti
,
Phys. Rev. E
62
,
993
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.