The purely rotational microwave spectrum of HCN and DCN embedded in He4 nanodroplets has been measured. The J=0→1 transitions for both molecules have been recorded at 72.21 and 59.90 GHz, respectively. The increase in moment of inertia due to the presence of liquid helium, which the assumption of adiabatic following of the helium density predicts should be almost identical for both molecules, is found to be 9% smaller for the faster of the two rotors, HCN. This result is interpreted as a breakdown of the adiabatic following approximation, which is valid for the slower rotors. Power-saturation measurements have also been performed, and show that the rotational relaxation time for these molecules is on the order of 10−8s.

1.
S.
Grebenev
,
J. P.
Toennies
, and
A. F.
Vilesov
,
Science
279
,
2083
(
1998
).
2.
J.
Higgins
,
C.
Callegari
,
J.
Reho
,
F.
Stienkemeier
,
W. E.
Ernst
,
K. K.
Lehmann
,
M.
Gutowski
, and
G.
Scoles
,
Science
273
,
629
(
1996
).
3.
K.
Nauta
and
R. E.
Miller
,
Science
283
,
1895
(
1999
).
4.
M.
Hartmann
,
R. E.
Miller
,
J. P.
Toennies
, and
A.
Vilesov
,
Phys. Rev. Lett.
75
,
1566
(
1995
).
5.
J.
Harms
,
M.
Hartmann
,
J. P.
Toennies
,
A. F.
Vilesov
, and
B.
Sartakov
,
J. Mol. Spectrosc.
185
,
204
(
1997
).
6.
C.
Callegari
,
I.
Reinhard
,
K. K.
Lehmann
,
G.
Scoles
,
K.
Nauta
, and
R. E.
Miller
,
J. Chem. Phys.
113
,
4636
(
2000
).
7.
K.
Nauta
and
R. E.
Miller
,
J. Chem. Phys.
111
,
3426
(
1999
).
8.
J. Gspann, in Physics of Electronic and Atomic Collisions, edited by S. Datz (North–Holland, Amsterdam, 1992), p. 79;
D. M.
Brink
and
S.
Stringari
,
Z. Phys. D: At., Mol. Clusters
15
,
257
(
1990
).
9.
C.
Callegari
,
A.
Conjusteau
,
I.
Reinhard
,
K. K.
Lehmann
,
G.
Scoles
, and
F.
Dalfovo
,
Phys. Rev. Lett.
83
,
5058
(
1999
);
C.
Callegari
,
A.
Conjusteau
,
I.
Reinhard
,
K. K.
Lehmann
,
G.
Scoles
, and
F.
Dalfovo
,
Phys. Rev. Lett.
84
,
184
(E) (
2000
).
10.
C. Callegari, A. Conjusteau, I. Reinhard, K. K. Lehmann, and G. Scoles, J. Chem. Phys. (to be published).
11.
Y.
Kwon
and
K. B.
Whaley
,
Phys. Rev. Lett.
83
,
4108
(
1999
).
12.
K. K.
Lehmann
,
Mol. Phys.
97
,
645
(
1999
).
13.
E.
Lee
,
D.
Farrelly
, and
K. B.
Whaley
,
Phys. Rev. Lett.
83
,
3812
(
1999
).
14.
R.
Fröchtenicht
,
M.
Kaloudis
,
M.
Koch
, and
F.
Huisken
,
J. Chem. Phys.
105
,
6128
(
1996
).
15.
M.
Behrens
,
U.
Buck
,
R.
Fröchtenicht
,
M.
Hartmann
,
F.
Huisken
, and
F.
Rohmund
,
J. Chem. Phys.
109
,
5914
(
1998
).
16.
I.
Reinhard
,
C.
Callegari
,
A.
Conjusteau
,
K. K.
Lehmann
, and
G.
Scoles
,
Phys. Rev. Lett.
82
,
5036
(
1999
).
17.
E. L. Knuth, B. Schilling, and J. P. Toennies, in International Symposium on Rarefied Gas Dynamics (19th: 1994 University of Oxford) (Oxford University Press, Oxford, 1995), Vol. 19.
18.
The formula used (in MKS units) is: T1T2=(1/2)ε02c/[(1/3)μ2Is], where μ is the electrical dipole moment of the molecule, and Is is the saturation intensity [see, e.g., A. Yariv, Quantum Electronics (Wiley, New York, 1975), Chap. 8].
19.
K.
Nauta
and
R. E.
Miller
,
Phys. Rev. Lett.
82
,
4480
(
1999
).
20.
K. M.
Atkins
and
J. M.
Hutson
,
J. Chem. Phys.
105
,
440
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.