Temperature-dependent properties of hydrophobic interactions are investigated by simulating the potential of mean force (PMF) between two methane-like solutes in TIP4P model water. Independent results from test particle insertion and free energy perturbation are compared to ensure that zero-PMF baselines are accurate. PMFs are computed under atmospheric pressure at five temperatures from 5 to 95 °C using constant-pressure simulations. The temperature dependence we observe does not agree with previous results from constant-volume simulations, highlighting the important effects of temperature-dependent water density on PMFs. Heat capacity changes upon association of two solutes are estimated at the PMF contact minimum, desolvation barrier, and the solvent (water)-separated minimum. The magnitude of the heat capacity change upon contact formation is much smaller than that predicted by the solvent accessible surface area (SASA). More surprisingly, the heat capacity change upon bringing two methanes from infinity to the desolvation barrier is large and positive. This implies that the thermodynamic signatures of the free energy barrier to desolvation have signs opposite to desolvation itself. This feature is not predicted by either SASA or a volume-based solvent exclusion model. The implications of these and other observations on implicit-solvent model potentials are discussed. Formulations based on thermodynamic perturbation and Widom’s potential distribution theory are developed to relate PMF and hydration mean forces to the underlying structural properties of aqueous solutions. In particular, we provide a theoretical perspective to understand PMF in terms of local water density and the occurrences of configurations with highly unfavorable solute–solvent repulsive interactions.

1.
W.
Kauzmann
,
Adv. Protein Chem.
14
,
1
(
1959
).
2.
K. A.
Dill
,
Biochemistry
29
,
7133
(
1990
).
3.
W.
Blokzijl
and
J. B. F. N.
Engberts
,
Angew. Chem. Int. Ed. Engl.
32
,
1545
(
1993
).
4.
G. I.
Makhatadze
and
P. L.
Privalov
,
J. Mol. Biol.
213
,
375
(
1990
).
5.
R. S.
Spolar
,
J. R.
Livingstone
, and
M. T.
Record
,
Biochemistry
31
,
3947
(
1992
).
6.
K. P.
Murphy
and
E.
Freire
,
Adv. Protein Chem.
43
,
313
(
1992
).
7.
J.
Gomez
,
V. J.
Hilser
,
D
Xie
, and
E.
Freire
,
Proteins
22
,
404
(
1995
).
8.
J. M.
Sturtevant
,
Proc. Natl. Acad. Sci. USA
74
,
2236
(
1977
).
9.
R. L.
Baldwin
,
Proc. Natl. Acad. Sci. USA
83
,
8069
(
1986
).
10.
P. L.
Privalov
and
S. J.
Gill
,
Adv. Protein Chem.
39
,
191
(
1988
).
11.
H. S.
Chan
and
K. A.
Dill
,
Annu. Rev. Biophys. Biomol. Struct.
26
,
425
(
1997
).
12.
D. R.
DeVido
,
J. G.
Dorsey
,
H. S.
Chan
, and
K. A.
Dill
,
J. Phys. Chem. B
102
,
7272
(
1998
).
13.
B.-L.
Chen
and
J. A.
Schellman
,
Biochemistry
28
,
685
(
1989
).
14.
K. A.
Dill
,
D. O. V.
Alonso
, and
K.
Hutchinson
,
Biochemistry
28
,
5439
(
1989
).
15.
F.
Franks
,
Adv. Protein Chem.
46
,
105
(
1995
).
16.
G.
Graziano
,
F.
Catanzano
,
A.
Riccio
, and
G.
Barone
,
J. Biochem. (Tokyo)
122
,
395
(
1997
).
17.
G.
Panick
,
G. J.
Vidugiris
,
R.
Malessa
,
G.
Rapp
,
R.
Winter
, and
C. A.
Royer
,
Biochemistry
38
,
4175
(
1999
).
18.
G. I.
Makhatadze
and
P. L.
Privalov
,
Adv. Protein Chem.
47
,
307
(
1995
).
19.
D.
Shortle
,
FASEB J.
10
,
27
(
1996
).
20.
T. R.
Sosnick
and
J.
Trewhella
,
Biochemistry
31
,
8329
(
1992
).
21.
Y.
Hagihara
,
M.
Hoshino
,
D.
Hamada
,
M.
Kataoka
, and
Y.
Goto
,
Folding Des.
3
,
195
(
1998
).
22.
D.
Yang
,
Y. K.
Mok
,
J. D.
Forman-Kay
,
N. A.
Farrow
, and
L. E.
Kay
,
J. Mol. Biol.
272
,
790
(
1997
).
23.
T.
Lazaridis
and
M.
Karplus
,
Proteins
35
,
133
(
1999
).
24.
T.
Lazaridis
and
M.
Karplus
,
Biophys. Chem.
78
,
207
(
1999
).
25.
H. S.
Chan
,
Proteins
40
,
543
(
2000
).
26.
H.
Kaya
and
H. S.
Chan
,
Proteins
40
,
637
(
2000
).
27.
B.
Roux
and
T.
Simonson
,
Biophys. Chem.
78
,
1
(
1999
).
28.
R. H.
Wood
and
P. T.
Thompson
,
Proc. Natl. Acad. Sci. USA
87
,
946
(
1990
).
29.
R. M.
Jackson
and
M. J. E.
Sternberg
,
Protein Eng.
7
,
371
(
1994
).
30.
R. B.
Hermann
,
J. Comput. Chem.
18
,
115
(
1997
).
31.
J. A.
Rank
and
D.
Baker
,
Protein Sci.
6
,
347
(
1997
).
32.
C. Y.
Lee
,
J. A.
McCammon
, and
P. J.
Rossky
,
J. Chem. Phys.
80
,
4448
(
1984
).
33.
Y.-K.
Cheng
and
P. J.
Rossky
,
Nature (London)
392
,
696
(
1998
).
34.
K. A. T.
Silverstein
,
A. D. J.
Haymet
, and
K. A.
Dill
,
J. Am. Chem. Soc.
120
,
3166
(
1998
).
35.
K. A. T.
Silverstein
,
A. D. J.
Haymet
, and
K. A.
Dill
,
J. Chem. Phys.
111
,
8000
(
1999
).
36.
N. T.
Southall
and
K. A.
Dill
,
J. Phys. Chem. B
104
,
1326
(
2000
).
37.
K.
Lum
,
D.
Chandler
, and
J. D.
Weeks
,
J. Phys. Chem. B
103
,
4570
(
1999
).
38.
A.
Sacco
,
A.
Asciolla
,
E.
Matteoli
, and
M.
Holz
,
J. Chem. Soc., Faraday Trans.
92
,
35
(
1996
).
39.
A.
Sacco
and
M.
Holz
,
J. Chem. Soc., Faraday Trans.
93
,
1101
(
1997
).
40.
M.
Mayele
,
M.
Holz
, and
A.
Sacco
,
Phys. Chem. Chem. Phys.
1
,
4615
(
1999
).
41.
C.
Pangali
,
M.
Rao
, and
B. J.
Berne
,
J. Chem. Phys.
71
,
2982
(
1979
).
42.
W. L.
Jorgensen
,
J. K.
Buckner
,
S.
Boudon
, and
J.
Tirado-Rives
,
J. Chem. Phys.
89
,
3742
(
1988
).
43.
D. E.
Smith
,
L.
Zhang
, and
A. D. J.
Haymet
,
J. Am. Chem. Soc.
114
,
5875
(
1992
).
44.
D. E.
Smith
and
A. D. J.
Haymet
,
J. Chem. Phys.
98
,
6445
(
1993
).
45.
D.
van Belle
and
S. J.
Wodak
,
J. Am. Chem. Soc.
115
,
647
(
1993
).
46.
L. X.
Dang
,
J. Chem. Phys.
100
,
9032
(
1994
).
47.
J.
Forsman
and
B.
Jönsson
,
J. Chem. Phys.
101
,
5116
(
1994
).
48.
P.
Jungwirth
and
R.
Zahradnik
,
Chem. Phys. Lett.
217
,
319
(
1994
).
49.
G.
Hummer
,
S.
Garde
,
A. E.
Garcia
,
A.
Pohorille
, and
L. R.
Pratt
,
Proc. Natl. Acad. Sci. USA
93
,
8951
(
1996
).
50.
S.
Lüdemann
,
H.
Schreiber
,
R.
Abseher
, and
O.
Steinhauser
,
J. Chem. Phys.
104
,
286
(
1996
).
51.
S.
Lüdemann
,
R.
Abseher
,
H.
Schreiber
, and
O.
Steinhauser
,
J. Am. Chem. Soc.
119
,
4206
(
1997
).
52.
W. S.
Young
and
C. L.
Brooks
III
,
J. Chem. Phys.
106
,
9265
(
1997
).
53.
S. W.
Rick
and
B. J.
Berne
,
J. Phys. Chem. B
101
,
10488
(
1997
).
54.
V. A.
Payne
,
N.
Matubayasi
,
L. R.
Murphy
, and
R. M.
Levy
,
J. Phys. Chem. B
101
,
2054
(
1997
).
55.
G.
Hummer
,
S.
Garde
,
A. E.
Garcia
,
M. E.
Paulatis
, and
L. R.
Pratt
,
Proc. Natl. Acad. Sci. USA
95
,
1552
(
1998
).
56.
N. T.
Skipper
,
Chem. Phys. Lett.
207
,
424
(
1993
).
57.
R. L.
Mancera
and
A. E.
Buckingham
,
Chem. Phys. Lett.
234
,
296
(
1995
).
58.
N. T.
Skipper
,
C.H.
Bridgeman
,
A. D.
Buckingham
, and
R. L.
Mancera
,
Faraday Discuss.
103
,
141
(
1996
).
59.
R. L.
Mancera
,
A. D.
Buckingham
, and
N. T.
Skipper
,
J. Chem. Soc., Faraday Trans.
93
,
2263
(
1997
).
60.
M.
Ikeguchi
,
S.
Shimizu
,
S.
Nakamura
, and
K.
Shimizu
,
J. Phys. Chem. B
102
,
5891
(
1998
).
61.
N.
Matubayasi
,
L. H.
Reed
, and
R. M.
Levy
,
J. Phys. Chem.
98
,
10640
(
1994
).
62.
R.
Brem
,
H. S.
Chan
, and
K. A.
Dill
,
J. Phys. Chem. B
104
,
7471
(
2000
).
63.
L. R.
Pratt
and
D.
Chandler
,
J. Chem. Phys.
67
,
3683
(
1977
).
64.
A.
Geiger
,
A.
Rahman
, and
F. H.
Stillinger
,
J. Chem. Phys.
70
,
263
(
1979
).
65.
T.
Head-Gordon
,
Proc. Natl. Acad. Sci. USA
92
,
8308
(
1995
).
66.
D. A.
Zichi
and
P. J.
Rossky
,
J. Chem. Phys.
83
,
797
(
1985
).
67.
B. J.
Berne
,
Proc. Natl. Acad. Sci. USA
93
,
8800
(
1996
).
68.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
).
69.
R. A.
Pierotti
,
J. Phys. Chem.
69
,
281
(
1965
).
70.
R. A.
Pierotti
,
Chem. Rev.
76
,
717
(
1976
).
71.
T. L. Hill, Statstical Mechanics (McGraw-Hill, New York, 1956).
72.
N.
Matubayasi
,
J. Am. Chem. Soc.
116
,
1450
(
1994
).
73.
M.
Pellegrini
,
N.
Gronbech-Jensen
, and
S.
Doniach
,
J. Chem. Phys.
104
,
8639
(
1996
).
74.
H. S.
Ashbaugh
,
S.
Garde
,
G.
Hummer
,
E. W.
Kaler
, and
M. E.
Paulaitis
,
Biophys. J.
77
,
645
(
1999
).
75.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
76.
B.
Widom
,
J. Phys. Chem.
86
,
869
(
1982
).
77.
A. Ben-Naim, Solvation Thermodynamics (Plenum, New York, 1987).
78.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
79.
H. S.
Chan
and
K. A.
Dill
,
J. Chem. Phys.
101
,
7007
(
1994
).
80.
S.
Shimizu
,
M.
Ikeguchi
,
S.
Nakamura
, and
K.
Shimizu
,
J. Chem. Phys.
110
,
2971
(
1999
).
81.
K. S.
Shing
and
S. T.
Chung
,
J. Phys. Chem.
91
,
1674
(
1987
).
82.
These expressions are the liberation term after the insertion of solute a into the system. Because the system is sufficiently large, the differences between using these expressions vis-à-vis the pre-insertion −kT ln〈V〉N and −kT ln〈V〉N,b are negligible.
83.
W. J.
Jorgensen
and
J. D.
Madura
,
Mol. Phys.
56
,
1381
(
1983
).
84.
W. L. Jorgensen, BOSS, Version 4.1 Yale University, New Haven, CT (1999).
85.
K. S.
Shing
and
K. E.
Gubbins
,
Mol. Phys.
46
,
1109
(
1982
).
86.
In the test-particle insertion approach, 〈V〉N and 〈V〉N,b are readily calculated because they entail averaging over the generated configurations. Because the test-particle method averages over ensemble before but not after solute insertion, it is not straightforward to use it to calculate 〈V〉N,a or 〈V〉N,ab.
87.
W. J.
Jorgensen
,
J. F.
Blake
, and
J. K.
Buckner
,
Chem. Phys.
129
,
193
(
1989
).
88.
H.
Naghibi
,
S. F.
Dec
, and
S. J.
Gill
,
J. Phys. Chem.
90
,
4621
(
1986
).
89.
T. J. Morrison and F. Billett, J. Chem. Soc. 3819 (1952).
90.
B.
Lee
,
Biopolymers
31
,
993
(
1991
).
91.
S.-I.
Segawa
and
M.
Sugihara
,
Biopolymers
23
,
2473
(
1984
).
92.
B.-L.
Chen
,
W. A.
Baase
, and
J. A.
Schellman
,
Biochemistry
28
,
691
(
1989
).
93.
S. E.
Jackson
and
A. R.
Fersht
,
Biochemistry
30
,
10428
(
1991
).
94.
T. R.
Sosnick
,
L.
Mayne
,
R.
Hiller
, and
S. W.
Englander
,
Nat. Struct. Biol.
1
,
149
(
1994
).
95.
T.
Schindler
and
F. X.
Schmid
,
Biochemistry
35
,
16833
(
1996
).
96.
H. S. Chan, in Monte Carlo Approach to Biopolymers and Protein Folding, edited by P. Grassberger, G. T. Barkema, and W. Nadler (World Scientific, Singapore, 1998).
97.
H. S.
Chan
and
K. A.
Dill
,
Proteins
30
,
2
(
1998
).
98.
V.
Daggett
and
M.
Levitt
,
Proc. Natl. Acad. Sci. USA
89
,
5142
(
1992
).
99.
D. O. V.
Alonso
and
V.
Daggett
,
J. Mol. Biol.
247
,
501
(
1995
).
100.
A.
Li
and
V.
Daggett
,
J. Mol. Biol.
257
,
412
(
1996
).
101.
G. S.
Kell
,
J. Chem. Eng. Data
12
,
66
(
1967
).
102.
V.
Daggett
,
A.
Li
,
L. S.
Itzhaki
,
D. E.
Otzen
, and
A. R.
Fersht
,
J. Mol. Biol.
257
,
430
(
1996
).
103.
B.
Lee
and
F. M.
Richards
,
J. Mol. Biol.
55
,
379
(
1971
).
104.
T.
Ooi
,
M.
Oobatake
,
G.
Nemethy
, and
H. A.
Scheraga
,
Proc. Natl. Acad. Sci. USA
84
,
3086
(
1987
).
105.
T.
Lazaridis
and
M.
Karplus
,
Science
278
,
1928
(
1997
).
106.
K. A.
Dill
,
J. Biol. Chem.
272
,
701
(
1997
).
107.
J. K.
Buckner
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
111
,
2507
(
1989
).
108.
J.
Chandrasekhar
,
D. C.
Spellmeyer
, and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
106
,
903
(
1984
).
109.
J.
Chandrasekhar
and
W. L.
Jorgensen
,
J. Chem. Phys.
77
,
5080
(
1982
).
110.
A.
Pohorille
and
L. R.
Pratt
,
J. Am. Chem. Soc.
112
,
5066
(
1990
).
111.
L. R.
Pratt
and
A.
Pohorille
,
Proc. Natl. Acad. Sci. USA
89
,
2995
(
1992
).
112.
B.
Lee
,
Biophys. Chem.
51
,
271
(
1994
).
113.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J. D.
Madura
,
R. W.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
114.
S. W.
Rick
,
J. Phys. Chem. B
104
,
6884
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.