Density Functional Theory (DFT) is utilized to compute field-dependent binding energies and intramolecular vibrational frequencies for carbon monoxide and nitric oxide chemisorbed on five hexagonal Pt-group metal surfaces, Pt, Ir, Pd, Rh, and Ru. The results are compared with corresponding binding geometries and vibrational frequencies obtained chiefly from infrared spectroscopy in electrochemical and ultrahigh vacuum environments in order to elucidate the broad-based quantum-chemical factors responsible for the observed metal- and potential-dependent surface bonding in these benchmark diatomic chemisorbate systems. The surfaces are modeled chiefly as 13-atom metal clusters in a variable external field, enabling examination of potential-dependent CO and NO bonding at low coverages in atop and threefold-hollow geometries. The calculated trends in the CO binding-site preferences are in accordance with spectral data: Pt and Rh switch from atop to multifold coordination at negative fields, whereas Ir and Ru exhibit uniformly atop, and Pd hollow-site binding, throughout the experimentally accessible interfacial fields. These trends are analyzed with reference to metal d-band parameters by decomposing the field-dependent DFT binding energies into steric (electrostatic plus Pauli) repulsion, and donation and back-donation orbital components. The increasing tendency towards multifold CO coordination seen at more negative fields is due primarily to enhanced back-donation. The decreasing propensity for atop vs multifold CO binding seen in moving from the lower-left to the upper-right Periodic corner of the Pt-group elements is due to the combined effects of weaker donation, stronger back-donation, and weaker steric repulsion. The uniformly hollow-site binding seen for NO arises from markedly stronger back-donation and weaker donation than for CO. The metal-dependent zero-field DFT vibrational frequencies are in uniformly good agreement with experiment; a semiquantitative concordance is found between the DFT and experimental frequency-field (“Stark-tuning”) slopes. Decomposition of the DFT bond frequencies shows that the redshifts observed upon chemisorption are due to donation as well as back-donation interactions; the metal-dependent trends, however, are due to a combination of several factors. While the observed positive Stark-tuning slopes are due predominantly to field-dependent back-donation, their observed sensitivity to the binding site and metal again reflect the interplay of several interaction components.

1.
For reviews, see (a) R. J. Nichols, in Adsorption of Molecules at Electrodes, edited by J. Lipkowski and P. N. Ross (VCH, New York, 1992), Chap. 7;
(b)
C.
Korzeniewski
and
M. W.
Severson
,
Spectrochim. Acta A
51
,
499
(
1995
);
(c)
T.
Iwasita
and
F. C.
Nart
,
Prog. Surf. Sci.
55
,
271
(
1997
);
(d) M. J. Weaver and S. Zou, in Spectroscopy for Surface Science, Advances in Spectroscopy, Vol. 26, edited by R. J. H. Clark and R. E. Hester (Wiley, Chichester, 1998), Chap. 5.
2.
(a)
S.-C.
Chang
and
M. J.
Weaver
,
J. Phys. Chem.
95
,
5391
(
1991
);
(b)
S-C.
Chang
and
M. J.
Weaver
,
Surf. Sci.
238
,
142
(
1990
);
(c)
S.-C.
Chang
and
M. J.
Weaver
,
J. Chem. Phys.
92
,
4582
(
1990
).
3.
(a)
S.-C.
Chang
,
X.
Jiang
,
J. D.
Roth
, and
M. J.
Weaver
,
J. Phys. Chem.
95
,
5378
(
1991
);
(b)
X.
Jiang
and
M. J.
Weaver
,
Surf. Sci.
275
,
237
(
1992
).
4.
M. J.
Weaver
,
Appl. Surf. Sci.
67
,
147
(
1993
).
5.
(a)
S.-L.
Yau
,
X.
Gao
,
S.-C.
Chang
,
B. C.
Schardt
, and
M. J.
Weaver
,
J. Am. Chem. Soc.
113
,
6049
(
1991
);
(b)
I.
Villegas
and
M. J.
Weaver
,
J. Chem. Phys.
101
,
1648
(
1994
);
(c)
S.
Zou
and
M. J.
Weaver
,
Surf. Sci.
446
,
L95
(
2000
).
6.
C.
Tang
,
S.
Zou
,
M. W.
Severson
, and
M. J.
Weaver
,
J. Phys. Chem. B
102
,
8796
(
1998
).
7.
(a)
C.
Tang
,
S.
Zou
, and
M. J.
Weaver
,
Surf. Sci.
412/413
,
344
(
1998
);
(b)
C.
Tang
,
S.
Zou
,
M. W.
Severson
, and
M. J.
Weaver
,
J. Phys. Chem. B
102
,
8546
(
1998
);
(c)
C.
Tang
,
S.
Zou
,
S-C.
Chang
, and
M. J.
Weaver
,
J. Electroanal. Chem.
467
,
92
(
1999
).
8.
(a)
M. J.
Weaver
,
S.
Zou
, and
C.
Tang
,
J. Chem. Phys.
111
,
368
(
1999
);
(b)
M. J.
Weaver
,
Surf. Sci.
437
,
215
(
1999
).
9.
(a)
I.
Villegas
and
M. J.
Weaver
,
J. Phys. Chem. B
101
,
5842
(
1997
);
(b)
I.
Villegas
,
R.
Gomez
, and
M. J.
Weaver
,
J. Phys. Chem.
99
,
14832
(
1995
).
10.
N.
Kizhakevariam
,
I.
Villegas
, and
M. J.
Weaver
,
J. Phys. Chem.
99
,
7677
(
1995
).
11.
R. A.
van Santen
and
M.
Neurock
,
Catal. Rev. Sci. Eng.
37
,
557
(
1995
).
12.
(a) B. Hammer and J. K. No/rskov, in Chemisorption and Reactivity on Supported Clusters and Thin Films, NATO ASI Series, edited by R. M. Lambert and G. Pacchioni (Kluwer Academic, Dordrecht, 1997), Vol. 331, p. 285;
(b)
A.
Ruban
,
B.
Hammer
,
C.
Stoltze
,
H. L.
Skriver
, and
J. K.
No/rskov
,
J. Mol. Catal. A: Chem.
115
,
421
(
1997
);
(c)
B.
Hammer
,
Y.
Morikawa
, and
J. K.
No/rskov
,
Phys. Rev. Lett.
76
,
2141
(
1996
).
13.
(a)
D.
Loffreda
,
D.
Simon
, and
P.
Sautet
,
J. Chem. Phys.
108
,
6447
(
1998
);
(b)
D.
Loffreda
,
D.
Simon
, and
P.
Sautet
,
Chem. Phys. Lett.
291
,
15
(
1998
);
(c)
Q.
Ge
and
D. A.
King
,
Chem. Phys. Lett.
285
,
15
(
1998
).
14.
(a)
D.
Loffreda
,
D.
Simon
, and
P.
Sautet
,
Surf. Sci.
425
,
68
(
1999
);
(b)
A.
Eichler
and
J.
Hafner
,
J. Chem. Phys.
109
,
5585
(
1998
).
15.
S.
Holloway
and
J. K.
No/rskov
,
J. Electroanal. Chem.
161
,
193
(
1984
).
16.
P. S.
Bagus
,
C. J.
Nelin
,
W.
Müller
,
M. R.
Philpott
, and
H.
Seki
,
Phys. Rev. Lett.
58
,
559
(
1987
).
17.
(a)
N. K.
Ray
and
A. B.
Anderson
,
J. Phys. Chem.
86
,
4851
(
1982
);
(b)
A. B.
Anderson
and
M. K.
Awad
,
J. Am. Chem. Soc.
107
,
7854
(
1985
);
(c)
S. P.
Mehandru
and
A. B.
Anderson
,
J. Phys. Chem.
93
,
2044
(
1989
).
18.
M.
Head-Gordon
and
J. C.
Tully
,
Chem. Phys.
175
,
37
(
1993
).
19.
(a)
F.
Illas
,
F.
Mele
,
D.
Curulla
,
A.
Clotet
, and
J. M.
Ricart
,
Electrochim. Acta
44
,
1213
(
1998
);
(b)
D.
Curulla
,
A.
Clotet
,
J. M.
Ricart
, and
F.
Illas
,
Electrochim. Acta
45
,
639
(
1999
).
20.
M. T. M.
Koper
and
R. A.
van Santen
,
J. Electroanal. Chem.
474
,
64
(
1999
).
21.
(a)
A.
de Koster
,
A. P. J.
Jansen
,
R. A.
van Santen
, and
J. J. C.
Geerlings
,
Faraday Discuss. Chem. Soc.
87
,
263
(
1989
);
(b)
A.
Goursot
,
I.
Papai
, and
D. R.
Salahub
,
J. Am. Chem. Soc.
14
,
7452
(
1992
);
(c)
G.
Pacchioni
,
S.-C.
Chung
,
S.
Krüger
, and
N.
Rösch
,
Surf. Sci.
392
,
173
(
1997
).
22.
Amsterdam Density Functional Package, ADF 2.3.0, Department of Theoretical Chemistry, Vrije Universiteit, Amsterdam, 1997.
23.
E. J.
Baerends
,
D. E.
Ellis
, and
P.
Ros
,
Chem. Phys.
2
,
41
(
1973
).
24.
G.
te Velde
and
E. J.
Baerends
,
J. Comput. Phys.
99
,
84
(
1992
).
25.
F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999).
26.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
27.
(a)
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
);
A. D.
Becke
,
ACS Symp. Ser.
394
,
165
(
1989
);
(c)
J. P.
Perdew
,
Phys. Rev. B
33
,
8822
(
1986
).
28.
E. L.
Meijer
,
R. A.
van Santen
, and
A. P. J.
Jansen
,
J. Phys. Chem.
100
,
9282
(
1996
).
29.
For example: (a)
M. C.
Asensio
,
D. P.
Woodruff
,
A. W.
Robinson
,
K-M.
Schindler
,
P.
Gardner
,
D.
Ricken
,
A. M.
Bradshaw
,
J. C.
Conesa
, and
A. R.
Gonzalez-Elipe
,
Chem. Phys. Lett.
192
,
259
(
1992
);
(b)
T.
Giessel
,
O.
Schaff
,
C. J.
Hirschmagl
,
V.
Fernandez
,
K-M.
Schindler
,
A.
Theobald
,
S.
Bao
,
R.
Lindsey
,
W.
Berndt
,
A. M.
Bradshaw
,
C.
Baddeley
,
A. F.
Lee
,
R. M.
Lambert
, and
D. P.
Woodruff
,
Surf. Sci.
406
,
90
(
1998
);
(c)
N.
Materer
,
A.
Barbieri
,
U.
Gardin
,
U.
Starke
,
J. D.
Batteas
,
M. A.
Van Hove
, and
G. A.
Somorjai
,
Surf. Sci.
303
,
319
(
1994
).
30.
M.
Gierer
,
A.
Barbieri
,
M. A.
Van Hove
, and
G. A.
Somorjai
,
Surf. Sci.
391
,
176
(
1997
).
31.
Y. J.
Kim
,
S.
Theruthasan
,
G. S.
Herman
,
C. H. E.
Peden
,
S. A.
Chambers
,
D. N.
Belton
, and
H.
Permana
,
Surf. Sci.
359
,
269
(
1996
).
32.
S.
Zou
,
R.
Gomez
, and
M. J.
Weaver
,
J. Electroanal. Chem.
474
,
155
(
1999
).
33.
(a)
E.
Schweizer
,
B. N. J.
Persson
,
M.
Tushaus
,
D.
Hoge
, and
A. M.
Bradshaw
,
Surf. Sci.
213
,
49
(
1989
);
(b)
M.
Tushaus
,
E.
Schweizer
,
P.
Hollins
, and
A. M.
Bradshaw
,
J. Electron Spectrosc. Relat. Phenom.
44
,
305
(
1987
).
34.
A.
Rodes
,
R.
Gomez
,
J. M.
Feliu
, and
M. J.
Weaver
,
Langmuir
16
,
811
(
2000
).
35.
F.
Esch
,
Th.
Greher
,
S.
Kennon
,
A.
Siokou
,
S.
Ladas
, and
R.
Imbihl
,
Catal. Lett.
38
,
165
(
1996
).
36.
F. M.
Hoffmann
,
Surf. Sci. Rep.
3
,
107
(
1983
).
37.
(a)
P. H. T.
Philipsen
,
E.
van Lenthe
,
J. G.
Snijders
, and
E. J.
Baerends
,
Phys. Rev. B
56
,
13556
(
1997
);
(b)
K.
Bleakley
and
P.
Hu
,
J. Am. Chem. Soc.
121
,
7644
(
1999
).
38.
For example, J. B. Benzinger, in Metal–Surface Energetics, edited by E. Shustorovich (VCH, New York, 1991), Chap. 2.
39.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
No/rskov
,
Phys. Rev. B
59
,
7413
(
1999
).
40.
P. E. M. Siegbahn and U. Wahlgren, in Ref. 38, Chap. 1.
41.
We have also calculated such “bond-constrained” E(st) values by adjusting the bond lengths for the uncoordinated (gas-phase) species so to match the field-dependent equilibrium values for the chemisorbates. This alternative approach therefore adjusts the (internal) steric repulsion in the isolated species to match that for the chemisorbate, rather than vice versa. Interestingly, the E(st) values obtained with either of the “bond-constrained” approaches are comparable (chiefly within 0.5 eV). This supports the notion that at least an approximate distinction can be made between steric-repulsion components associated with the internal chemisorbate, and metal–chemisorbate bonds.
42.
G.
Blyholder
,
J. Phys. Chem.
68
,
2772
(
1964
).
43.
S. A. Wasileski, M. T. M. Koper, and M. J. Weaver (in preparation).
44.
(a)
D. K.
Lambert
,
Electrochim. Acta
41
,
623
(
1996
);
(b)
D. K.
Lambert
,
Solid State Commun.
51
,
297
(
1984
).
45.
(a)
T.
Ziegler
and
A.
Rauk
,
Theor. Chim. Acta
46
,
1
(
1977
);
(b)
K.
Morokuma
,
Acc. Chem. Res.
10
,
294
(
1977
);
(c)
D.
Post
and
E. J.
Baerends
,
J. Chem. Phys.
78
,
5663
(
1983
);
(d)
F. M.
Bickelhaupt
,
N. M. M.
Nibbering
,
E. M.
van Wezenbeek
, and
E. J.
Baerends
,
J. Phys. Chem.
96
,
4864
(
1992
).
46.
P. S.
Bagus
and
G.
Pacchioni
,
Surf. Sci.
236
,
233
(
1990
).
47.
(a)
P. S.
Bagus
,
K.
Hermann
, and
C. W.
Bauschlicher
,Jr.
,
J. Chem. Phys.
80
,
4378
(
1984
);
(b)
P. S.
Bagus
and
F.
Illas
,
J. Chem. Phys.
96
,
8962
(
1992
).
48.
F.
Illas
,
S.
Zurita
,
A. M.
Márquez
, and
J.
Rubio
,
Surf. Sci.
376
,
279
(
1997
).
49.
A. M.
Márquez
,
N.
Lopez
,
M.
Garcı́a-Hernández
, and
F.
Illas
,
Surf. Sci.
442
,
463
(
1999
).
50.
This differs from the (CSOV) analysis of Bagus et al. (Ref. 47) in which the subset of the full orbital space in which the orbitals are allowed to vary, and hence constitute a particular contribution, corresponding to the (virtual) orbital space of the fragments, whereas in the ADF analysis they refer to the (virtual) orbital spaces of the irreducible representations of the system’s symmetry group.
This content is only available via PDF.
You do not currently have access to this content.