We study adsorption of hydrogen-bonded fluids in slit-like pores with strongly attractive walls, in the framework of the four-site associating Lennard-Jones model. The density profiles, as well as the phase behavior, are obtained by using a density functional method. We have found that, at temperatures lower than the critical temperature of the bulk fluid, the confined fluid undergoes one or more layering transitions dependent on the pore width, followed by capillary condensation. Each of the transitions is localized by analyzing the grand thermodynamic potential. The density profiles of nonbonded and differently bonded particles demonstrating changes of the structure of the fluid in the pore along the coexistence are discussed briefly. The critical temperature for capillary condensation is lower for confined fluid, compared with that for the bulk liquid–vapor transition, as expected. However, an increase of the energy of association between fluid species increases the critical temperatures for layering transitions and for capillary condensation. The envelope of the capillary condensation is narrower than the bulk liquid–vapor phase diagram. The ratio between the critical temperatures for layering transitions and capillary condensation depends on the pore width. The critical temperature for the second layering is always lower than for the first one. The triple point temperature between either the second layering transition and the capillary condensation (in wider pores) or the first layering transition and the capillary condensation (in narrower pores) increases with decreasing pore width. The triple point temperature between the layering transitions is much lower than the relevant temperature between the second layering transition and the capillary condensation. The triple point temperatures also depend on the association energy. We have shown that highly bonded fluid species prevail at triple point temperatures.

1.
D. Nicholson and N. D. Parsonage, Computer Simulation and the Statistical Mechanics of Adsorption (Academic, New York, 1983).
2.
M. Shoen, Computer Simulation of Condensed Phases in Complex Geometries, Lecture Notes in Physics (Springer-Verlag, Berlin–Heidelberg, 1993).
3.
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
).
4.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
);
M. S.
Wertheim
,
J. Stat. Phys.
35
,
35
(
1984
).
5.
M. S.
Wertheim
,
J. Stat. Phys.
42
,
459
(
1986
);
M. S.
Wertheim
,
J. Stat. Phys.
42
,
477
(
1986
).
6.
M. F.
Holovko
and
E.
Vakarin
,
Mol. Phys.
85
,
1057
(
1995
).
7.
O.
Pizio
,
D.
Henderson
, and
S.
Sokołowski
,
J. Phys. Chem.
99
,
2408
(
1995
).
8.
A.
Trokhymchuk
,
O.
Pizio
,
D.
Henderson
, and
S.
Sokołowski
,
Chem. Phys. Lett.
262
,
33
(
1996
).
9.
D.
Henderson
,
O.
Pizio
,
S.
Sokołowski
, and
A.
Trokhymchuk
,
Physica A
244
,
147
(
1997
).
10.
R. Evans, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992), Chap. 3.
11.
J. Henderson, in Fundamentals of Inhomogeneous Fluids, edited by D. Henderson (Marcel Dekker, New York, 1992), Chap. 2.
12.
P.
Rocken
,
A.
Somoza
,
P.
Tarazona
, and
G.
Findenegg
,
J. Chem. Phys.
108
,
8689
(
1998
).
13.
W.
Gac
,
A.
Patrykiejew
, and
S.
Sokołowski
,
Surf. Sci.
306
,
434
(
1994
).
14.
G.
Chmiel
,
K.
Karykowski
,
A.
Patrykiejew
,
W.
Rżysko
, and
S.
Sokołowski
,
Mol. Phys.
81
,
691
(
1994
).
15.
C.
Segura
,
W. G.
Chapman
, and
K.
Shukla
,
Mol. Phys.
90
,
759
(
1997
).
16.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
);
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
).
17.
D.
Ghonasgi
and
W. G.
Chapman
,
Mol. Phys.
79
,
291
(
1993
).
18.
J. K.
Johnson
and
K. E.
Gubbins
,
Mol. Phys.
77
,
1033
(
1992
).
19.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Fluid Phase Equilibria
52
,
31
(
1989
).
20.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
1709
(
1990
).
21.
A.
Galindo
,
P. J.
Whitehead
,
G.
Jackson
, and
A. N.
Burgess
,
J. Phys. Chem.
100
,
6781
(
1998
).
22.
C. J.
Segura
,
E. V.
Vakarin
,
W. G.
Chapman
, and
M. F.
Holovko
,
J. Chem. Phys.
108
,
4837
(
1998
).
23.
A.
Patrykiejew
,
S.
Sokołowski
, and
D.
Henderson
,
Mol. Phys.
95
,
211
(
1998
).
24.
R.
Zagórski
,
M.
Borówko
,
S.
Sokołowski
, and
O.
Pizio
,
Mol. Phys.
96
,
885
(
1999
).
25.
K.
Stepniak
,
A.
Patrykiejew
,
Z.
Sokołowska
, and
S.
Sokołowski
,
J. Colloid Interface Sci.
214
,
91
(
1999
).
26.
A.
Huerta
,
S.
Sokołowski
, and
O.
Pizio
,
Mol. Phys.
97
,
919
(
1999
). Referred to as part I in this paper.
27.
A.
Patrykiejew
and
S.
Sokołowski
,
J. Phys. Chem. B
103
,
4466
(
1999
).
28.
P.
Tarazona
,
Phys. Rev. A
31
,
2672
(
1985
);
P.
Tarazona
,
Phys. Rev. A
, Erratum
32
,
3148
(
1985
).
29.
D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1997
).
30.
L. L. Lee, Molecular Thermodynamics of Non-Ideal Fluids (Butterworth, London, 1988).
31.
I.
Nezbeda
and
J.
Pavlicek
,
Fluid Phase Equilibria
116
,
530
(
1996
).
32.
I.
Nezbeda
,
J.
Kolafa
,
J.
Pavlicek
, and
W. R.
Smith
,
J. Chem. Phys.
102
,
9638
(
1995
).
33.
C.
Vega
and
P. A.
Monson
,
J. Chem. Phys.
109
,
9938
(
1998
).
34.
R.
Evans
and
P. C.
Ball
,
J. Chem. Phys.
89
,
4412
(
1988
).
35.
R.
Evans
,
J. Phys.: Condens. Matter
2
,
8989
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.