Molecular dynamics simulations of nucleation of Lennard-Jones vapor confined in a slit pore have been performed. The walls of the slit pore are structureless walls; each wall interacts with vapor molecules via Lennard-Jones 9–3 potential. The rate of nucleation in the steady state is determined by analyzing time evolution of the cluster size distribution. At the same vapor density and temperature, the nucleation rate in the slit pore is higher than in the homogeneous vapor [K. Yasuoka and M. Matsumoto, J. Chem. Phys. 109, 8451 (1998)], irrespective of the strength of attraction between the wall and vapor molecules. However, this attraction strongly affects the process of nucleus formation: if the attraction is weak (a drying wall), nuclei tend to form in the middle of the pore, whereas if the attraction is strong (a wetting wall), the nucleus formation originates from two sources, the surface diffusion of adsorbed molecules and deposition of clusters formed in the middle of the pore.

1.
See, for example,
K. E.
Gubbins
,
M.
Sliwinska-Bartkowiak
, and
S.-H.
Suh
,
Mol. Simul.
17
,
333
(
1996
), and references therein.
2.
D. W.
Oxtoby
,
Acc. Chem. Res.
31
,
91
(
1998
).
3.
K.
Yasuoka
and
M.
Matsumoto
,
J. Chem. Phys.
109
,
8451
(
1998
).
4.
V.
Talanquer
and
D. W.
Oxtoby
,
J. Chem. Phys.
104
,
1483
(
1996
).
5.
R. D.
Gretz
,
J. Chem. Phys.
45
,
3160
(
1966
).
6.
G.
Navascués
and
P.
Tarazona
,
J. Chem. Phys.
75
,
2441
(
1981
).
7.
B.
Widom
,
J. Phys. Chem.
99
,
2803
(
1995
).
8.
M.
Volmer
,
Z. Elektrochem.
35
,
555
(
1929
).
9.
D.
Turnbull
,
J. Chem. Phys.
18
,
198
(
1950
).
10.
K. C.
Ho
and
J. R.
Maa
,
J. Colloid Interface Sci.
,
85
(
413
)
1982.
11.
J. S.
Sheu
,
J. R.
Maa
, and
J. L.
Katz
,
J. Stat. Phys.
52
,
1143
(
1988
).
12.
J. S.
Sheu
and
J. R.
Maa
,
J. Colloid Interface Sci.
135
,
178
(
1990
).
13.
H.
Shinagawa
,
K.
Okuyama
, and
Y.
Kawamura
,
Can. J. Chem. Eng.
71
,
238
(
1993
).
14.
M.
Lazaridis
,
J. Colloid Interface Sci.
155
,
386
(
1993
).
15.
R. H.
Heist
,
M.
Janjua
, and
J.
Ahmed
,
J. Phys. Chem.
98
,
4443
(
1994
).
16.
J. A.
Fisk
and
J. L.
Katz
,
J. Chem. Phys.
104
,
8649
(
1996
).
17.
D.
Kane
and
M. S.
El-Shall
,
J. Chem. Phys.
105
,
7617
(
1996
).
18.
C. C. M.
Luijten
,
K. J.
Bosschaart
, and
M. E. H.
van Dongen
,
J. Chem. Phys.
106
,
8116
(
1997
).
19.
W. A.
Steele
,
Surf. Sci.
36
,
317
(
1973
).
20.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987).
21.
We used 1000 target particles in the Gibbs ensemble Monte Carlo (GEMC) simulation. For each slit pore, the simulation consists of 20 000 MC cycles, the first 10 000 for equibration and the other 10 000 for data accumulation. Each MC cycle consists of 1000 particle displacements, 100–500 particle exchanges, and one volume rearrangement. For the technical details of GEMC, see
A. Z.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
22.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
23.
S.
Nosé
,
Prog. Theor. Phys.
103
,
1
(
1991
).
24.
F. H.
Stillinger
,
J. Chem. Phys.
38
,
1486
(
1963
).
25.
P. A. Egelstaff, An Introduction to the Liquid State, 2nd ed. (Oxford University Press, Oxford, 1992).
26.
K. Yasuoka and M. Matsumoto, unpublished data.
27.
K. Kholmurodov, K. Yasuoka, and X. C. Zeng (unpublished).
28.
L.
Bocquet
,
F.
Restagno
, and
T.
Biben
, preprint (see, cond-mat/9901180).
This content is only available via PDF.
You do not currently have access to this content.