The π-orbital electronic structure of polyhex carbon tori constructed from bent individual single-wall nanotubes is investigated within the tight-binding approach. Analytical solutions for tori from nanotubes of arbitrary radius, length, chirality, and twisting angle are derived using simple geometrical and band-structure arguments. Vanishing of the gap between highest occupied and lowest unoccupied molecular orbitals for a torus imposes divisibility by 3 on the indices of chiral and twisting vectors, which translates into one graph-theoretical condition: a metallic polyhex torus is constructible as a leapfrog transformation of a smaller polyhex torus.

1.
J.
Liu
,
H.
Dai
,
J. H.
Hafner
,
D. T.
Colbert
,
R. E.
Smalley
,
S. J.
Tans
, and
C.
Dekker
,
Nature (London)
385
,
780
(
1997
).
2.
T.
Vossmeyer
et al.,
Adv. Mater.
10
,
351
(
1998
), and references therein.
3.
R.
Martel
,
H. R.
Shea
, and
P.
Avouris
,
Nature (London)
398
,
299
(
1999
).
4.
B. I.
Dunlap
,
Phys. Rev. B
46
,
1933
(
1992
).
5.
J. C.
Greer
,
S.
Itoh
, and
S.
Ihara
,
Chem. Phys. Lett.
222
,
621
(
1994
).
6.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
7.
S.
Itoh
,
S.
Ihara
, and
J. I.
Kitami
,
Phys. Rev. B
47
,
1703
(
1993
).
8.
R. C.
Haddon
,
Nature (London)
388
,
31
(
1997
).
9.
V.
Meunier
,
Ph.
Lambin
, and
A. A.
Lucas
,
Phys. Rev. B
57
,
14886
(
1998
).
10.
E. C.
Kirby
,
R. B.
Mallion
, and
P.
Pollak
,
J. Chem. Soc., Faraday Trans.
98
,
1945
(
1993
).
11.
A.
Ceulemans
,
L. F.
Chibotaru
, and
P. W.
Fowler
,
Phys. Rev. Lett.
80
,
1861
(
1998
).
12.
M.-F.
Lin
,
R.-B.
Chen
, and
F.-L.
Shyu
,
Solid State Commun.
107
,
227
(
1998
).
13.
M. F.
Lin
and
D. S.
Chuu
,
Phys. Rev. B
57
,
6731
(
1998
).
14.
M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, New York, 1995).
15.
S. L. Altman, Band Theory of Solids: An Introduction From the Point of Symmetry (Clarendon, Oxford, 1994).
16.
J. M. Ziman, Principles of the Theory of Solids (Cambridge University Press, Cambridge, 1972).
17.
P. R.
Wallace
,
Phys. Rev.
71
,
622
(
1947
).
18.
R.
Saito
,
M.
Fujita
,
G.
Dresselhaus
, and
M. S.
Dresselhaus
,
Phys. Rev. B
46
,
1804
(
1992
).
19.
N.
Hamada
,
S. I.
Sawada
, and
A.
Oshiyama
,
Phys. Rev. Lett.
68
,
1579
(
1992
).
20.
S. S.
Savinskii
and
N. V.
Khokhryakov
,
JETP
84
,
1131
(
1997
).
21.
J. W. G.
Wildöer
,
L. C.
Venema
,
A. G.
Rinzler
,
R. E.
Smalley
, and
C.
Dekker
,
Nature (London)
391
,
59
(
1998
).
22.
S.
Negami
,
Discrete Math.
44
,
161
(
1983
).
23.
C.
Thomassen
,
Trans. Am. Math. Soc.
323
,
605
(
1991
).
24.
D. E.
Manolopoulos
and
P. W.
Fowler
,
J. Chem. Phys.
96
,
7603
(
1992
).
25.
D. J.
Klein
,
W. A.
Seitz
, and
T. G.
Schmalz
,
J. Phys. Chem.
97
,
1231
(
1993
).
26.
P. W.
Fowler
and
J. I.
Steer
,
J. Chem. Soc. Chem. Commun.
1997
,
1403
.
27.
P. W.
Fowler
and
K. M.
Rogers
,
J. Chem. Soc., Faraday Trans.
94
,
2509
(
1998
).
28.
M.
Yoshida
,
M.
Fujita
,
P.
W.Fowler
, and
E. C.
Kirby
,
J. Chem. Soc., Faraday Trans.
93
,
1037
(
1997
).
29.
P. W.
Fowler
and
T.
Pisanski
,
J. Chem. Soc., Faraday Trans.
90
,
2865
(
1994
).
30.
M. Deza, P. W. Fowler, K. M. Rogers, and A. Rassat, J. Chem. Inf. Comp. Sci. (in press).
31.
D. J.
Klein
,
J. Chem. Inf. Comp. Sci.
34
,
453
(
1994
).
32.
E. C.
Kirby
,
Croat. Chem. Acta
68
,
269
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.