A new practical approach to studying enzyme reactions by combining ab initio QM/MM calculations with free energy perturbation is presented. An efficient iterative optimization procedure has been developed to determine optimized structures and minimum energy paths for a system with thousands of atoms on the ab initio QM/MM potential: the small QM sub-system is optimized using a quasi-Newton minimizer in redundant internal coordinates with ab initio QM/MM calculations, while the large MM sub-system is minimized by the truncated Newton method in Cartesian coordinates with only molecular mechanical calculations. The above two optimization procedures are performed iteratively until they converge. With the determined minimum energy paths, free energy perturbation calculations are carried out to determine the change in free energy along the reaction coordinate. Critical to the success of the iterative optimization procedure and the free energy calculations is the smooth connection between the QM and MM regions provided by a recently proposed pseudobond QM/MM approach [J. Chem. Phys. 110, 46 (1999)]. The methods have been demonstrated by studying the initial proton transfer step in the reaction catalyzed by the enzyme triosephosphate isomerase (TIM).

1.
A. Warshel, Computer Modeling of Chemical Reactions in Enzymes (Wiley, New York, 1991).
2.
J.
Aqvist
and
A.
Warshel
,
Chem. Rev.
93
,
2523
(
1993
).
3.
J.
Aqvist
and
M.
Fothergill
,
J. Biol. Chem.
271
,
10010
(
1996
).
4.
M.
Fuxreiter
and
A.
Warshel
,
J. Am. Chem. Soc.
120
,
183
(
1998
).
5.
J. Gao, Review in Computational Chemistry, Vol. 7 (VCH, New York, 1995), pp. 119–185.
6.
R. A.
Friesner
and
M. D.
Beach
,
Curr. Opin. Struct. Biol.
8
,
257
(
1998
).
7.
K. M. Merz, Jr. and R. V. Stanton, Encyclopedia of Computational Chemistry (Wiley, New York, 1998), pp. 2330–2343.
8.
A.
Warshel
and
M.
Levitt
,
J. Mol. Biol.
103
,
227
(
1976
).
9.
U. C.
Singh
and
P.
Kollman
,
J. Comput. Chem.
7
,
718
(
1986
).
10.
M. J.
Field
,
P. A.
Bash
, and
M.
Karplus
,
J. Comput. Chem.
11
,
700
(
1990
).
11.
J.
Gao
and
X.
Xia
,
Science
258
,
631
(
1992
).
12.
R. V.
Stanton
,
D. S.
Hartsough
, and
K. M.
Merz
, Jr.
,
J. Phys. Chem.
97
,
11868
(
1993
).
13.
V.
Thery
,
D.
Rinaldi
, and
J.-L.
Rivail
,
J. Comput. Chem.
15
,
269
(
1994
).
14.
F.
Maseras
and
K.
Morokuma
,
J. Comput. Chem.
16
,
1170
(
1995
).
15.
K. P.
Eurenius
,
D. C.
Chatfield
,
B. R.
Brooks
, and
M.
Hodoscek
,
Int. J. Quantum Chem.
60
,
1189
(
1996
).
16.
D.
Bakowies
and
W.
Thiel
,
J. Phys. Chem.
100
,
10580
(
1996
).
17.
I. B.
Bersuker
,
M. K.
Leong
,
J. E.
Boggs
, and
R. S.
Pearlman
,
Int. J. Quantum Chem.
63
,
1051
(
1997
).
18.
J.
Gao
,
P.
Amara
,
C.
Alhambra
, and
M. J.
Field
,
J. Phys. Chem. A
102
,
4714
(
1998
).
19.
P. A.
Bash
et al.,
Biochemistry
30
,
5826
(
1991
).
20.
H.
Liu
,
F.
Muller-Plathe
, and
W. F.
van Gunsteren
,
J. Mol. Biol.
261
,
454
(
1996
).
21.
M. A.
Cunningham
et al.,
Biochemistry
36
,
4800
(
1997
).
22.
K. M.
Merz
, Jr.
and
L.
Banci
,
J. Am. Chem. Soc.
119
,
863
(
1997
).
23.
C.
Alhambra
,
L.
Wu
,
Z.-Y.
Zhang
, and
J.
Gao
,
J. Am. Chem. Soc.
120
,
3858
(
1998
).
24.
S.
Antonczak
,
G.
Monard
,
M. F.
Ruiz-Lopez
, and
J.-L.
Rivail
,
J. Am. Chem. Soc.
120
,
8825
(
1998
).
25.
C.
Alhambra
et al.,
J. Am. Chem. Soc.
121
,
2253
(
1999
).
26.
J.
Bentzien
,
R. P.
Muller
,
J.
Florian
, and
A.
Warshel
,
J. Phys. Chem. B
102
,
2293
(
1998
).
27.
R. V.
Stanton
,
M.
Perakyla
,
D.
Bakowies
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
120
,
3448
(
1998
).
28.
Y.
Zhang
,
T.
Lee
, and
W.
Yang
,
J. Chem. Phys.
110
,
46
(
1999
).
29.
P. D.
Lyne
,
M.
Hodoscek
, and
M.
Karplus
,
J. Phys. Chem. A
103
,
3462
(
1999
).
30.
M.
Eichinger
,
P.
Tavan
,
J.
Hutter
, and
M.
Parrinello
,
J. Chem. Phys.
110
,
10452
(
1999
).
31.
J.
Chandrasekhar
,
S. F.
Smith
, and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
107
,
154
(
1985
).
32.
J.
Chandrasekhar
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
107
,
2974
(
1985
).
33.
W. L.
Jorgensen
,
Acc. Chem. Res.
22
,
184
(
1989
).
34.
W. Hehre, L. Radom, P. Schleyer, and J. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
35.
R. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
36.
H. B. Schlegel, in Ab Initio Methods in Quantum Chemistry. Advances in Chemical Physics, Vol. 67, edited by K. P. Lawley (Wiley, New York, 1987), pp. 249–286.
37.
P.
Pulay
and
G.
Fogarasi
,
J. Chem. Phys.
96
,
2856
(
1992
).
38.
C.
Peng
,
P. Y.
Ayala
,
H. B.
Schlegel
, and
M. J.
Frisch
,
J. Comput. Chem.
17
,
49
(
1996
).
39.
P. Y.
Ayala
and
H. B.
Schlegel
,
J. Chem. Phys.
107
,
375
(
1997
).
40.
B.
Paizs
,
G.
Fogarasi
, and
P.
Pulay
,
J. Chem. Phys.
109
,
6571
(
1998
).
41.
O.
Farkas
and
H. B.
Schlegel
,
J. Chem. Phys.
109
,
7100
(
1998
).
42.
J. W.
Ponder
and
F. M.
Richards
,
J. Comput. Chem.
8
,
1016
(
1987
).
43.
P.
Derreumaux
,
G.
Zhang
,
T.
Schlick
, and
B.
Brooks
,
J. Comput. Chem.
15
,
532
(
1994
).
44.
R. S.
Dembo
and
T.
Steihaug
,
Math. Program.
26
,
190
(
1983
).
45.
B. H.
Besler
,
K. M.
Merz
, Jr.
, and
P. A.
Kollman
,
J. Comput. Chem.
11
,
431
(
1990
).
46.
R.
Elber
and
M.
Karplus
,
Chem. Phys. Lett.
139
,
375
(
1987
).
47.
S.
Fischer
and
M.
Karplus
,
Chem. Phys. Lett.
194
,
252
(
1992
).
48.
M. J. S.
Dewar
and
S.
Kirschner
,
J. Am. Chem. Soc.
93
,
4291
(
1971
).
49.
I. H.
Williams
and
G. M.
Maggiora
,
J. Mol. Struct.
89
,
365
(
1982
).
50.
M. J.
Rothman
and
L. L.
Lohr
,
Chem. Phys. Lett.
70
,
405
(
1980
).
51.
P.
Scharfenberg
,
Chem. Phys. Lett.
79
,
115
(
1981
).
52.
R. W.
Zwanzig
,
J. Chem. Phys.
22
,
1420
(
1954
).
53.
M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.5 (Gaussian, Inc., Pittsburgh, PA, 1998).
54.
J. W. Ponder, TINKER, Software Tools for Molecular Design, Version 3.6 (The most updated version for the TINKER program can be obtained from J. W. Ponder’s World Wide Web site at http://dasher.wustl.edu/tinker., February 1998).
55.
J. R.
Knowles
and
W. J.
Albery
,
Acc. Chem. Res.
10
,
105
(
1977
).
56.
G.
Alagona
,
P.
Desmeules
,
C.
Ghio
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
106
,
3623
(
1984
).
57.
R. C.
Davenport
et al.,
Biochemistry
30
,
5821
(
1991
).
58.
P. A.
Bash
et al.,
Biochemistry
30
,
5826
(
1991
).
59.
G.
Alagona
,
C.
Ghio
, and
P. A.
Kollman
,
J. Am. Chem. Soc.
117
,
9855
(
1995
).
60.
M.
Perakyla
and
T. A.
Pakkanen
,
Proteins
25
,
225
(
1996
).
61.
T. K.
Harris
,
C.
Abeygunawardana
, and
A. S.
Mildvan
,
Biochemistry
36
,
14661
(
1997
).
62.
J. A. Gerlt, in Bioorganic Chemistry: Peptides and Proteins, edited by S. M. Hecht (Oxford University Press, New York, 1998), pp. 279–311.
63.
W. D.
Cornell
et al.,
J. Am. Chem. Soc.
117
,
5179
(
1995
).
64.
W. L.
Jorgensen
et al.,
J. Chem. Phys.
79
,
926
(
1983
).
65.
J.-P.
Ryckaert
,
G.
Ciccotti
, and
H. J. C.
Berendsen
,
J. Comput. Phys.
23
,
327
(
1977
).
66.
H. J. C.
Berendsen
et al.,
J. Chem. Phys.
81
,
3684
(
1984
).
67.
W.
van Gunsteren
et al.,
J. Comput. Chem.
5
,
272
(
1984
).
68.
W. J.
Albery
and
J. R.
Knowles
,
Biochemistry
15
,
5627
(
1976
).
This content is only available via PDF.
You do not currently have access to this content.