The geometries, rotational constants, harmonic force constants and frequencies, dissociation and term energies of CF2,CCl2, and CBr2 in their respective X̃(1A1),ã(3B1) and Ã(1B1) states, computed by complete active space self-consistent field (CASSCF), complete active space second-order purturbation (CASPT2), and coupled-cluster with single, double and perturbative triple excitations [CCSD(T)] methods and cc-pVTZ basis sets, are reported. For CCl2 and CBr2 the barriers to linearity are also characterized. The computed spectroscopic constants are in good agreement with the available experimental data. The atomization energies and hence heats of formation at 0 and 298 K of these molecules as well as of CHF, CHCl, and CFCl, all in their lowest singlet ground states were also computed by the CCSD(T) method utilizing basis sets ranging from cc-pVDZ to aug-cc-pVQZ, cc-pCVQZ and G3large, enabling the extrapolation of the energies to a complete basis set (CBS) limit and the inclusion of core–valence correlation (with the exception of CBr2). Scalar relativistic corrections, computed by CASPT2, were also taken into account. The final CBS results are ΔfH2980(CHF)=147±4 kJ mol−1,ΔfH2980(CHCl)=320±4 kJ mol−1,ΔfH2980(CFCl)=29±4 kJ mol−1,ΔfH2980(CCl2)=229±4 kJ mol−1, and ΔfH2980(CBr2)=337±8 kJ mol−1. The GAUSSIAN-3 (G3) heats of formation of these molecules are within 2 kJ mol−1 of the CBS values, representing significant improvement over the GAUSSIAN-2 predictions which differ from the CBS results by up to ∼10 kJ mol−1. Similarly, the G3 triplet/singlet energy separations are found to be in good agreement with those obtained at the CCSD(T)/cc-pVQZ level of theory including core–valence correlation corrections, as well as experiment.

1.
C. Wentrup, Reactive Molecules (Wiley, New York, 1962), p. 162.
2.
J. F. Liebman and J. Simons, in Molecular Structure and Energetics (VCH, Deerfield Beach, FL, 1986), Vol. 1, p. 51.
3.
B. J. Finlayson-Pitts and J. N. Pitts, Jr., Atmospheric Chemistry: Fundamentals and Experimental Techniques (Wiley, New York, 1986).
4.
D. S.
King
and
J. C.
Stephenson
,
J. Am. Chem. Soc.
100
,
7151
(
1978
).
5.
J. J.
Ritter
,
J. Am. Chem. Soc.
100
,
2441
(
1978
).
6.
I.
Shavitt
,
Tetrahedron
41
,
1531
(
1985
), and references therein.
7.
D. C.
Comeau
,
I.
Shavitt
,
P.
Jensen
, and
P. R.
Buenker
,
J. Chem. Phys.
90
,
6491
(
1989
).
8.
P. H.
Mueller
,
N. G.
Rondan
,
K. N.
Houk
,
J. F.
Harrison
,
D.
Hooper
,
B. H.
Willen.
, and
J. F.
Liebman
,
J. Am. Chem. Soc.
103
,
5049
(
1981
).
9.
G. E.
Scuseria
,
M.
Durán
,
R. G. A. R.
Maclagan
, and
H. F.
Schaefer III
,
J. Am. Chem. Soc.
108
,
3248
(
1985
).
10.
E. A.
Carter
and
W. A.
Goddard III
,
J. Phys. Chem.
91
,
4651
(
1987
).
11.
E. A.
Carter
and
W. A.
Goddard III
,
J. Chem. Phys.
88
,
1752
(
1987
).
12.
K. K.
Irikura
,
W. A.
Goddard III
, and
L. J.
Beauchamp
,
J. Am. Chem. Soc.
114
,
48
(
1992
).
13.
M. R.
Cameron
,
S. H.
Kable
, and
G. B.
Bacskay
,
J. Chem. Phys.
103
,
4476
(
1995
).
14.
T. W.
Schmidt
,
G. B.
Bacskay
, and
S. H.
Kable
,
Chem. Phys. Lett.
292
,
80
(
1998
).
15.
K. Sendt, T. W. Schmidt, and G. B. Bacskay, Int. J. Quantum Chem. (in press).
16.
P. T.
Knepp
,
C. K.
Scalley
,
G. B.
Bacskay
, and
S. H.
Kable
,
J. Chem. Phys.
109
,
2220
(
1998
).
17.
B. O.
Roos
,
P. R.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
18.
B. O. Roos, in Ab Initio Methods in Quantum Chemistry-II, edited by K. P. Lawley (Wiley, Chichester, 1987), p. 399.
19.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
20.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
21.
K.
Andersson
,
P-Å.
Malmqvist
,
B. O.
Roos
,
A. J.
Sadlej
, and
K.
Wolinski
,
J. Phys. Chem.
94
,
5483
(
1990
).
22.
K.
Andersson
,
P-Å.
Malmqvist
, and
B. O.
Roos
,
J. Chem. Phys.
96
,
1218
(
1992
).
23.
T. W.
Schmidt
,
G. B.
Bacskay
, and
S. H.
Kable
,
J. Chem. Phys.
110
,
11277
(
1999
).
24.
P. T.
Knepp
and
S. H.
Kable
,
J. Chem. Phys.
110
,
11789
(
1999
).
25.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
26.
A. K. Wilson, K. A. Peterson, D. E. Woon, and T. H. Dunning (unpublished).
27.
D. A.
Dixon
and
D.
Feller
,
J. Phys. Chem. A
102
,
8209
(
1998
).
28.
D. A.
Dixon
,
D.
Feller
, and
G.
Sandrone
,
J. Phys. Chem. A
103
,
4744
(
1999
).
29.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
), and references therein.
30.
J. M. L.
Martin
and
P. R.
Taylor
,
J. Chem. Phys.
106
,
8620
(
1997
).
31.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
32.
C. W.
Bauschlicher
, Jr.
and
A.
Ricca
,
J. Phys. Chem. A
102
,
8044
(
1998
).
33.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
34.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
,
V.
Rassolov
, and
J. A.
Pople
,
J. Chem. Phys.
109
,
7764
(
1998
).
35.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
36.
C.
Hampel
,
K.
Peterson
, and
H.-J.
Werner
,
Chem. Phys. Lett.
190
,
1
(
1992
), and references therein.
The program to compute the perturbative triples corrections has been developed by M. J. O. Deegan and P. J. Knowles (1992).
37.
P. J.
Knowles
,
C.
Hampel
, and
H.-J.
Werner
,
J. Chem. Phys.
99
,
5219
(
1993
).
38.
DALTON, an ab initio electronic structure program, Release 1.0 (1997)” written by T. Helgaker, H. J. Aa. Jensen, P. Joergensen, J. Olsen, K. Ruud, H. Aagren, T. Andersen, K. L. Bak, V. Bakken, O. Christiansen, P. Dahle, E. K. Dalskov, T. Enevoldsen, B. Fernandez, H. Heiberg, H. Hettema, D. Jonsson, S. Kirpekar, R. Kobayashi, H. Koch, K. V. Mikkelsen, P. Norman, M. J. Packer, T. Saue, P. R. Taylor, and O. Vahtras.
39.
MOLCAS Version 4, K. Andersson, M. R. A. Blomberg, M. P. Fülscher, G. Karlström, R. Lindh, P.-Å. Malmqvist, P. Neogrády, J. Olsen, B. O. Roos, A. J. Sadlej, M. Schütz, L. Seijo, L. Serrano-Andrés, P. E. M. Siegbahn, and P.-O. Widmark, Lund University Sweden, 1997.
40.
MOLPRO 96.3 is a package of ab initio programs written by H.-J. Werner and P. J. Knowles, with contributions from J. Almlöf, R. D. Amos, M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. Peterson, R. Pitzer, A. J. Stone, P. R. Taylor, R. Lindh, M. E. Mura, and T. Thorsteinsson.
41.
K.
Andersson
,
Theor. Chim. Acta
91
,
31
(
1995
).
42.
R. S.
Grev
,
C. L.
Janssen
, and
H. F.
Schaefer III
,
J. Chem. Phys.
95
,
5128
(
1991
).
43.
J. A.
Pople
,
A. P.
Scott
,
M. W.
Wong
, and
L.
Radom
,
Isr. J. Chem.
33
,
345
(
1993
).
44.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
45.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
46.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
47.
Basis sets were obtained from the Extensible Computational Chemistry Environment Basis Set Database, Version 1.0, as developed and distributed by the Molecular Science Computing Facility, Environmental and Molecular Sciences Laboratory which is part of the Pacific Northwest Laboratory, P.O. Box 999, Richland, Washington 99352, and funded by the U.S. Department of Energy. The Pacific Northwest Laboratory is a multiprogram laboratory operated by Battelle Memorial Institue for the U.S. Department of Energy under Contract No. DE-AC06-76RLO 1830. Contact David Feller or Karen Schuchardt for further information.
48.
R. D.
Cowan
and
M.
Griffin
,
J. Opt. Soc. Am.
66
,
1010
(
1976
).
49.
R. L.
Martin
,
J. Phys. Chem.
87
,
750
(
1983
).
50.
L. A.
Curtiss
,
K.
Raghavachari
,
P. C.
Redfern
, and
J. A.
Pople
,
J. Chem. Phys.
106
,
1063
(
1997
).
51.
C. W.
Mathews
,
Can. J. Phys.
45
,
2355
(
1967
).
52.
V. M.
Garcia
,
O.
Castell
,
M.
Reguero
, and
R.
Caballol
,
Mol. Phys.
87
,
1395
(
1996
).
53.
N.
Russo
,
E.
Scilia
, and
M.
Toscano
,
J. Chem. Phys.
97
,
5031
(
1992
).
54.
K. A.
Peterson
,
R. C.
Mayrhofer
,
E. L.
Sibert
III
, and
R. C.
Woods
,
J. Chem. Phys.
94
,
414
(
1991
).
55.
P. B.
Davies
,
W.
Lewis-Bevan
, and
K. D.
Russell
,
J. Chem. Phys.
75
,
5602
(
1981
).
56.
K. K.
Murray
,
D. G.
Leopold
,
T. M.
Miller
, and
W. C.
Lineberger
,
J. Chem. Phys.
89
,
5442
(
1988
).
57.
H.-B.
Qian
and
P. B.
Davies
,
J. Mol. Spectrosc.
169
,
201
(
1995
).
58.
P. B.
Davies
,
P. A.
Hamilton
,
J. M.
Elliot
, and
M. J.
Rice
,
J. Mol. Spectrosc.
102
,
193
(
1983
).
59.
S.
Koda
,
Chem. Phys. Lett.
55
,
353
(
1978
).
60.
S.
Zhou
,
M.
Zhan
,
Y.
Qiu
,
S.
Liu
,
J.
Shi
,
F.
Li
, and
J.
Yao
,
Chem. Phys. Lett.
121
,
395
(
1985
).
61.
D. S.
King
,
P. K.
Schneck
, and
J. C.
Stephenson
,
J. Mol. Spectrosc.
78
,
1
(
1979
).
62.
D. J.
Clouthier
and
J.
Karolczak
,
J. Chem. Phys.
94
,
1
(
1991
).
63.
M.
Fujitake
and
E.
Hirota
,
J. Chem. Phys.
91
,
3426
(
1989
).
64.
Z.-L.
Cai
,
X.-G.
Zhang
, and
X.-Y.
Wang
,
Chem. Phys. Lett.
210
,
481
(
1993
).
65.
V. E.
Bondybey
,
J. Mol. Spectrosc.
64
,
180
(
1977
).
66.
D. A.
Predmore
,
A. M.
Murray
, and
M. D.
Harmony
,
Chem. Phys. Lett.
110
,
173
(
1984
).
67.
S.
Xu
and
M. D.
Harmony
,
J. Phys. Chem.
97
,
7465
(
1993
).
68.
D. E.
Tevault
and
L.
Andrews
,
J. Am. Chem. Soc.
97
,
1707
(
1975
).
69.
V. E.
Bondybey
and
J. H.
English
,
J. Mol. Spectrosc.
79
,
416
(
1980
).
70.
S. K.
Zhou
,
M. S.
Zhan
,
J. L.
Shi
, and
C. X.
Wang
,
Chem. Phys. Lett.
166
,
547
(
1990
).
71.
P.
Jensen
and
P. R.
Bunker
,
J. Chem. Phys.
89
,
1327
(
1988
).
72.
M. E.
Jacox
and
D. E.
Milligan
,
J. Chem. Phys.
47
,
1626
(
1967
).
73.
J.
Karolczak
,
D. L.
Joo
, and
D. J.
Clouthier
,
J. Chem. Phys.
99
,
1447
(
1993
).
74.
R. K.
Lengel
and
R. N.
Zare
,
J. Am. Chem. Soc.
100
,
7495
(
1978
).
75.
C. C.
Hayden
,
D. M.
Neumark
,
K.
Shabatake
,
R. K.
Sparks
, and
Y. T.
Lee
,
J. Chem. Phys.
76
,
3607
(
1982
).
76.
M. W.
Chase
, Jr.
, NIST-JANAF Thermochemical Tables, 4th ed. [
J. Phys. Chem. Ref. Data Monogr.
9
,
1
1998
].
77.
J. C.
Poutsma
,
J. A.
Paulino
, and
R. R.
Squires
,
J. Phys. Chem.
101
,
5327
(
1997
).
78.
J. A.
Paulino
and
R. R.
Squires
,
J. Am. Chem. Soc.
113
,
5573
(
1991
).
79.
D. W.
Berman
and
J. L.
Beauchamp
,
Int. J. Mass Spectrom. Ion Phys.
39
,
263
(
1981
).
80.
S. G.
Lias
,
Z.
Karpas
, and
J. F.
Liebman
,
J. Am. Chem. Soc.
107
,
6080
(
1985
).
This content is only available via PDF.
You do not currently have access to this content.