The shape of the ν1 Raman Q branch of CH4 perturbed by Ar and He at room temperature has been studied. Stimulated Raman spectroscopy (SRS) experiments have been made in the 2915–2918 cm−1 spectral region for total pressures from 0.4 to 70 atm and mixtures of ≈5% CH4 with He and Ar. Analysis of the spectra demonstrates that the shape of the Q branch is significantly influenced by line mixing and much narrower than what is predicted by the addition of individual line profiles. For the first time, a model is proposed for the calculation and analysis of the effects of collisions on the considered spectra. In this approach, the rotational part of the relaxation matrix is constructed, with no adjustable parameter, starting from semiclassical state-to-state rates. Two empirical constants which account for the shift and broadening of the branch due to vibrational effects are introduced and their values are determined from fits of measured spectra. Comparisons between measurements and results computed with and without the inclusion of line mixing are made. Although not perfect, our model satisfactory accounts for most effects of pressure at low densities, where rotational transfers are dominant, as well as at high densities, where the profile is strongly influenced by vibrational contributions. It is shown that collisions with He and Ar lead to different behaviors at elevated pressure. The influence of the perturbation introduced by the Fermi coupling between the ν1 and ν24 levels is discussed and the rotational and vibrational contributions to the spectral shape are pointed out.

1.
A. S.
Pine
,
J. Chem. Phys.
97
,
773
(
1992
).
2.
D. C.
Benner
,
V.
Malathy Devi
,
M. A. H.
Smith
, and
C. P.
Rinsland
,
J. Quant. Spectrosc. Radiat. Transf.
50
,
65
(
1993
).
3.
V. Malathy
Devi
,
D. C.
Benner
,
M. A. H.
Smith
, and
C. P.
Rinsland
,
J. Quant. Spectrosc. Radiat. Transf.
51
,
439
(
1994
).
4.
C. P.
Rinsland
,
V. Malathy
Devi
,
M. A. H.
Smith
, and
D. C.
Benner
,
Appl. Opt.
27
,
631
(
1988
).
5.
T.
Gabard
,
J. Quant. Spectrosc. Radiat. Transf.
57
,
177
(
1997
).
6.
T.
Gabard
,
J. Quant. Spectrosc. Radiat. Transf.
59
,
287
(
1998
).
7.
S. P.
Neshyba
et al.,
J. Chem. Phys.
101
,
9412
(
1994
).
8.
D. C.
Benner
et al.,
J. Quant. Spectrosc. Radiat. Transf.
53
,
705
(
1995
).
9.
A. S.
Pine
,
J. Quant. Spectrosc. Radiat. Transf.
57
,
145
(
1997
).
10.
V. M. Devi et al., 53th International Symposium on Molecular Spectroscopy paper WF10-WF12, Columbus, OH, (1998).
11.
D.
Pieroni
et al.,
J. Chem. Phys.
110
,
7717
(
1999
).
12.
D.
Pieroni
et al.,
J. Chem. Phys.
111
,
6850
(
1999
).
13.
A. S. Pine and T. Gabard, J. Quant. Spectrosc. Radiat. Transf. (in press).
14.
G.
Millot
,
B.
Lavorel
, and
J. I.
Steinfeld
,
J. Chem. Phys.
95
,
7938
(
1991
).
15.
M. A.
Echargui
and
F.
Marsault-Herail
,
Mol. Phys.
60
,
605
(
1987
).
16.
Y.
Taira
,
K.
Ide
, and
H.
Takuma
,
Chem. Phys. Lett.
91
,
299
(
1982
).
17.
M.
Ridder
,
A. A.
Suvernev
, and
T.
Dreier
,
J. Chem. Phys.
105
,
3376
(
1996
).
18.
D. N.
Kozlov
,
V. V.
Smirnov
, and
S. Yu.
Volkov
,
Appl. Phys. B: Photophys. Laser Chem.
48
,
273
(
1989
).
19.
S. Yu.
Volkov
,
D. N.
Kozlov
,
M. R.
Malikov
, and
V. V.
Smirnov
,
Sov. Phys. JETP
59
,
482
(
1984
).
20.
B.
Lavorel
et al.,
Mol. Phys.
75
,
397
(
1992
).
21.
B.
Lavorel
et al.,
J. Chem. Phys.
103
,
9903
(
1995
).
22.
J. Ph.
Berger
et al.,
Phys. Rev. A
49
,
3396
(
1994
).
23.
T.
Gabard
and
J.-P.
Champion
,
J. Quant. Spectrosc. Radiat. Transf.
52
,
303
(
1994
).
24.
P. M.
Sinclair
et al.,
Phys. Rev. A
54
,
402
(
1996
).
25.
S. Angus, B. Armstrong, and K. M. de Reuck, International Thermodynamic Tables of the Fluid State: Argon (Pergamon, Oxford, 1971).
26.
S. Angus and K. M. de Reuck, International Thermodynamic Tables of the Fluid State: Helium-4 (Pergamon, Oxford, 1977).
27.
B. Lavorel et al., J. Chem. Phys. (in press).
28.
D. N. Kozlov (private communication), detailed values of the Q branch width and shift for CH4–Ar at different densities.
29.
Yu. I.
Bulgakov
and
M. L.
Strekalov
,
Opt. Spectrosc.
76
,
516
(
1994
).
30.
R.
Rodrigues
,
C.
Boulet
,
L.
Bonamy
, and
J. M.
Hartmann
,
J. Chem. Phys.
109
,
3037
(
1998
).
31.
R.
Rodrigues
et al.,
J. Chem. Phys.
107
,
4118
(
1997
).
32.
M. L.
Strekalov
and
A. I.
Burshtein
,
Chem. Phys.
60
,
133
(
1981
).
33.
L.
Ozanne
,
J. M.
Hartmann
,
J. P.
Bouanich
, and
C.
Boulet
,
Chem. Phys. Lett.
261
,
353
(
1996
).
34.
Q.
Ma
,
R. H.
Tipping
,
G.
Birnbaum
, and
C.
Boulet
,
J. Quant. Spectrosc. Radiat. Transf.
59
,
259
(
1998
).
35.
A. Levy, N. Lacome, and C. Chackerian, Jr., in Spectroscopy of the Earth Atmosphere and Interstellar Medium (Academic, New York, 1992), pp. 261–337.
36.
J. M.
Hartmann
et al.,
J. Chem. Phys.
110
,
7733
(
1999
).
37.
J. P. Champion, M. Loete, and G. Pierre, in Spectroscopy of the Earth’s Atmosphere and Interstellar Medium (Academic, New York, 1992).
38.
J. C.
Hilico
et al.,
J. Mol. Spectrosc.
168
,
455
(
1994
).
39.
C.
Wenger
and
J. P.
Champion
,
J. Quant. Spectrosc. Radiat. Transf.
59
,
471
(
1998
).
40.
D. V.
Kalinin
et al.,
J. Quant. Spectrosc. Radiat. Transf.
62
,
13
(
1999
).
41.
U.
Buck
,
J.
Schleusener
,
D. J.
Malik
, and
D.
Secrest
,
J. Chem. Phys.
74
,
1707
(
1981
).
42.
U.
Buck
et al.,
Mol. Phys.
55
,
1255
(
1985
).
43.
L.
Ozanne
et al.,
J. Chem. Phys.
102
,
7306
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.