The rotational spectra of the complexes Ar–AgF, Ar–AgCl, and Ar–AgBr have been observed in the frequency range 6–20 GHz using a pulsed jet cavity Fourier transform microwave spectrometer. All the complexes are linear and rather rigid in the ground vibrational state, with the Ar–Ag stretching frequency estimated as ∼140 cm−1. Isotopic data have been used to calculate an r0 structure for Ar–AgF, while for Ar–AgCl and Ar–AgBr partial substitution structures have also been obtained. To reduce zero-point vibrational effects a double substitution method (rd) was employed to calculate the structures of Ar–AgCl and Ar–AgBr. The Ar–Ag bond distance has been found to be rather short and to range from 2.56 Å in Ar–AgF to 2.64 Å in Ar–AgBr. Ab initio MP2 and density functional theory calculations for Ar–AgF and Ar–AgCl model the geometries and stretching frequency well, and predict an Ar–Ag bond energy in Ar–AgF of ∼23 kJ mol−1. These results indicate that the Ar–AgX complexes are more strongly bound than typical van der Waals complexes. Analysis of the halogen nuclear quadrupole coupling constants was unable to confirm whether extensive electron rearrangement occurs upon formation of the complexes.

1.
D.
Lessen
and
P. J.
Brucat
,
Chem. Phys. Lett.
10
,
473
(
1988
).
2.
D.
Lessen
and
P. J.
Brucat
,
J. Chem. Phys.
90
,
6296
(
1989
).
3.
C. S.
Yeh
et al.,
J. Chem. Phys.
98
,
1867
(
1993
).
4.
S. I.
Panov
,
J. M.
Williamson
, and
T. A.
Miller
,
J. Chem. Phys.
102
,
7359
(
1995
).
5.
J. S.
Pilgrim
,
C. S.
Yeh
,
K. R.
Berry
, and
M. A.
Duncan
,
J. Chem. Phys.
100
,
7945
(
1994
).
6.
C.
Jouvet
,
S.
Lardeux-Dedonder
,
S.
Martrenchard
, and
D.
Solgadi
,
J. Chem. Phys.
94
,
1759
(
1991
).
7.
L. R.
Brock
and
M. A.
Duncan
,
J. Chem. Phys.
103
,
9200
(
1995
).
8.
A.
Stangassinger
,
J.
Scheuchenpflug
,
T.
Prinz
, and
V. E.
Bondybey
,
Chem. Phys. Lett.
209
,
372
(
1993
).
9.
M. J.
McQuaid
,
J. L.
Gole
, and
M. C.
Heaven
,
J. Chem. Phys.
92
,
2733
(
1990
).
10.
P. A.
Hackett
et al.,
J. Chem. Phys.
99
,
4300
(
1993
).
11.
J.
Tellinghuisen
et al.,
J. Chem. Phys.
71
,
1283
(
1979
).
12.
C. L.
Callender
,
S. A.
Mitchell
, and
P. A.
Hackett
,
J. Chem. Phys.
90
,
2535
(
1989
).
13.
C. L.
Callender
,
S. A.
Mitchell
, and
P. A.
Hackett
,
J. Chem. Phys.
90
,
5252
(
1989
).
14.
J. M.
Gardiner
and
M. I.
Lester
,
Chem. Phys. Lett.
137
,
301
(
1987
).
15.
D. L.
Robbins
,
K. F.
Willey
,
C. S.
Yeh
, and
M. A.
Duncan
,
J. Phys. Chem.
96
,
4824
(
1992
).
16.
S. A.
Heidecke
,
Z.
Fu
,
J. R.
Colt
, and
M. D.
Morse
,
J. Chem. Phys.
97
,
1692
(
1992
).
17.
Y.
Ohshima
,
M.
Iida
, and
Y.
Endo
,
J. Chem. Phys.
92
,
3990
(
1990
).
18.
A.
Mizoguchi
,
Y.
Endo
, and
Y.
Ohshima
,
J. Chem. Phys.
109
,
10539
(
1998
).
19.
T. J.
Balle
and
W. H.
Flygare
,
Rev. Sci. Instrum.
52
,
33
(
1981
).
20.
Y.
Xu
,
W.
Jäger
, and
M. C. L.
Gerry
,
J. Mol. Spectrosc.
151
,
206
(
1992
).
21.
J.
Haekel
and
H.
Mäder
,
Z. Naturforsch. Teil A
43
,
203
(
1988
).
22.
K. A.
Walker
and
M. C. L.
Gerry
,
J. Mol. Spectrosc.
182
,
178
(
1997
).
23.
C.
Mo/ller
and
M. S.
Plesset
,
J. Chem. Phys.
46
,
618
(
1934
).
24.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
25.
GAUSSIAN 98 (Revision A.6); M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Rudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Lahma, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. G. Johnson, W. Chen, M. W. Wong, J. L. Andres, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian, Inc., Pittsburgh, PA, 1998.
26.
D.
Andrae
et al.,
Theor. Chim. Acta
77
,
123
(
1990
).
27.
I.
Antes
,
S.
Dapprich
,
G.
Frenking
, and
P.
Schwerdtfeger
,
Inorg. Chem.
35
,
2889
(
1996
).
28.
A.
Ramirez-Solis
,
J. P.
Daudey
,
M. E.
Ruiz
, and
O.
Novaro
,
Z. Phys. D: At. Mol. Clusters
15
,
71
(
1990
).
29.
A. D.
McLean
and
G. S.
Chandler
,
J. Chem. Phys.
72
,
5639
(
1980
).
30.
K. D.
Hensel
et al.,
J. Chem. Phys.
99
,
3320
(
1993
).
31.
E.
Pearson
and
W.
Gordy
,
Phys. Rev.
152
,
42
(
1966
).
32.
H. M.
Pickett
,
J. Mol. Spectrosc.
148
,
371
(
1991
).
33.
J.
Hoeft
,
F. J.
Lovas
,
E.
Tiemann
, and
T.
Törring
,
Z. Naturforsch.
26a
,
240
(
1971
).
34.
Lines of the ground vibrational state of the four isotopomers of AgBr were remeasured in this laboratory to improve the accuracy of the nuclear quadrupole coupling constants of Br79 and Br81.
35.
W. Gordy and R. L. Cook, Microwave Molecular Spectra, No. XVIII in Techniques of Chemistry, 3rd ed. (Wiley, New York, 1984), Chap. 13.
36.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw-Hill, New York, 1953), p. 42.
37.
D. K.
Coles
and
R. H.
Hughes
,
Phys. Rev.
76
,
178A
(
1949
).
38.
J.
Hoeft
,
F. J.
Lovas
,
E.
Tiemann
, and
T.
Törring
,
Z. Naturforsch.
25a
,
35
(
1970
).
39.
C. C.
Costain
,
J. Chem. Phys.
29
,
864
(
1958
).
40.
C. C.
Costain
,
Trans. Am. Crystallogr. Assoc.
2
,
157
(
1966
).
41.
L.
Pierce
,
J. Mol. Spectrosc.
3
,
575
(
1959
).
42.
R. F.
Barrow
and
R. M.
Clements
,
Proc. R. Soc. London, Ser. A
322
,
243
(
1971
).
43.
B.
Brice
,
Phys. Rev.
22
,
573
(
1931
).
44.
A.
Ernesti
and
J. M.
Hutson
,
J. Chem. Phys.
101
,
5438
(
1994
).
45.
W.
Jäger
,
Y.
Xu
, and
M. C. L.
Gerry
,
J. Phys. Chem.
97
,
3685
(
1993
).
46.
S. J.
Harris
,
S. E.
Novick
, and
W.
Klemperer
,
J. Chem. Phys.
61
,
193
(
1974
).
47.
S.
Blanco
,
A. C.
Legon
, and
J. C.
Thorn
,
J. Chem. Soc., Faraday Trans.
90
,
1365
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.