Several effects due to the coupling of the translational motion of a gas phase atom (H), to the vibrations of a substrate [Cu(100)], are investigated here with time-dependent wave packet methods. Three different propagation techniques, namely, reduced-dimensionality but “exact” wave packet propagation, the time-dependent-self-consistent-field (TDSCF) method, and the “mean-field” (Ehrenfest) mixed quantum-classical-molecular-dynamics scheme (QCMD), are tested against each other and compared with classical trajectory results, and with rigid-surface calculations. Our key findings are: (1) The Cu(100) substrate is very “open” for impinging H atoms, leading to large subsurface and bulk absorption yields; (2) the H atoms can be “hot” for several picoseconds after hitting the surface before they finally settle down in adsorption or absorption sites; (3) while classical mechanics agrees reasonably well with the exact quantum calculation, the mixed quantum-classical and TDSCF approaches which both rely on a single-configuration ansatz for the total nuclear wave function, grossly underestimate the coupling between the H atom and the surrounding Cu atoms; (4) all (approximate) methods agree in the fact that by taking more substrate vibrations into account, the reflection probability diminishes while sticking increases.

1.
K.
Christmann
,
Surf. Sci. Rep.
9
,
1
(
1988
).
2.
D.
Shalashilin
,
Bret
Jackson
, and
Mats
Persson
,
Faraday Discuss.
108
,
287
(
1998
), and references therein.
3.
J.
Harris
and
B.
Kasemo
,
Surf. Sci.
105
,
L281
(
1981
).
4.
J.
Boh
,
G.
Eilmsteiner
,
K. D.
Rendulic
, and
A.
Winkler
,
Surf. Sci.
47
,
412
(
1982
).
5.
C. L.
Lamont
,
B. N. J.
Persson
, and
G. P.
Williams
,
Chem. Phys. Lett.
243
,
429
(
1995
).
6.
U.
Bischler
,
P.
Sandl
,
E.
Bertel
,
T.
Brunner
, and
W.
Brenig
,
Phys. Rev. Lett.
70
,
3603
(
1993
).
7.
K.
Schönhammer
and
O.
Gunnarsson
,
Surf. Sci.
117
,
53
(
1984
).
8.
B. N. J.
Persson
and
M.
Persson
,
Solid State Commun.
36
,
175
(
1980
).
9.
J. W.
Gadzuk
,
Surf. Sci.
118
,
180
(
1982
).
10.
B. N. J.
Persson
and
J. W.
Gadzuk
,
Surf. Sci.
410
,
L779
(
1998
).
11.
G. P.
Brivio
and
T. B.
Grimley
,
Surf. Sci.
89
,
226
(
1979
).
12.
J. C.
Tully
,
M.
Gomez
, and
M.
Head-Gordon
,
J. Vac. Sci. Technol. A
11
,
1914
(
1993
).
13.
G. D.
Billing
,
Chem. Phys.
99
,
15378
(
1995
).
14.
A. G.
Borisov
,
A. K.
Kazansky
, and
J. P.
Gauyacq
,
Phys. Rev. B
59
,
10935
(
1999
).
15.
S.
Gao
,
Phys. Rev. B
55
,
1876
(
1997
).
16.
J. C.
Tully
,
Acc. Chem. Res.
14
,
188
(
1981
), and references therein.
17.
D. V.
Shalashilin
and
B.
Jackson
,
J. Chem. Phys.
109
,
2856
(
1998
).
18.
M.
Hand
and
J.
Harris
,
J. Chem. Phys.
92
,
7610
(
1990
).
19.
M.
Dohle
and
P.
Saalfrank
,
Surf. Sci.
373
,
95
(
1997
).
20.
R.
Baer
and
R.
Kosloff
,
J. Chem. Phys.
106
,
8862
(
1997
).
21.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
87
,
5781
(
1987
).
22.
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
).
23.
B.
Jackson
,
Comput. Phys. Commun.
80
,
119
(
1994
).
24.
K. Blum, Density Matrix Theory and Applications (Plenum, New York, 1981).
25.
B.
Jackson
,
Chem. Phys. Lett.
308
,
456
(
1999
).
26.
See, for example,
Y.
Guan
,
J. T.
Muckerman
, and
T.
Uzer
,
J. Chem. Phys.
93
,
4400
(
1990
).
27.
D. S.
Sholl
and
J. C.
Tully
,
J. Chem. Phys.
109
,
7702
(
1998
), and references therein.
28.
M. S.
Daw
and
M. I.
Baskes
,
Phys. Rev. B
29
,
6643
(
1984
).
29.
K. W.
Jacobsen
,
P.
Stolze
, and
J. K.
No/rskov
,
Surf. Sci.
366
,
394
(
1996
).
30.
J.
Strömquist
,
L.
Bengtsson
,
M.
Persson
, and
B.
Hammer
,
Surf. Sci.
387
,
382
(
1998
).
31.
M. D.
Feit
,
J.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
).
32.
G.
Jolicard
and
G. D.
Billing
,
Chem. Phys.
149
,
261
(
1991
).
33.
P.
Nettesheim
,
F. A.
Bornemann
,
B.
Schmidt
, and
Ch.
Schütte
,
Chem. Phys. Lett.
256
,
581
(
1996
).
34.
U.
Peskin
and
M.
Steinberg
,
J. Chem. Phys.
109
,
704
(
1998
).
35.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes, 2nd ed. (Cambridge University Press, Cambridge, 1992).
36.
H.-W.
Lee
,
Phys. Rep.
259
,
147
(
1995
).
37.
A.
Gross
,
S.
Wilke
, and
M.
Scheffler
,
Phys. Rev. Lett.
75
,
2718
(
1995
).
38.
R. A.
Olsen
,
G. J.
Kroes
, and
E. J.
Baerends
,
J. Chem. Phys.
109
,
2450
(
1998
).
39.
D. C.
Harris
,
G. R.
Darling
, and
S.
Holloway
,
Surf. Sci.
433–435
,
838
(
1999
).
40.
M.
Dohle
,
T.
Uzer
, and
P.
Saalfrank
,
J. Chem. Phys.
108
,
4226
(
1998
).
41.
F. A.
Bornemann
,
P.
Nettesheim
, and
Ch.
Schütte
,
J. Chem. Phys.
105
,
1074
(
1996
).
42.
P.
Jungwirth
and
R. B.
Gerber
,
Chem. Rev.
99
,
1583
(
1999
), and references therein.
43.
J. O.
Jung
and
R. B.
Gerber
,
J. Chem. Phys.
105
,
10332
(
1996
).
44.
J. T.
Kindt
,
J. C.
Tully
,
M.
Head-Gordon
, and
M. A.
Gomez
,
J. Chem. Phys.
109
,
3629
(
1998
).
45.
V.
Guallar
,
V. S.
Batista
, and
W. H.
Miller
,
J. Chem. Phys.
110
,
9922
(
1999
), and references therein.
46.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
).
47.
R. B.
Gerber
,
Chem. Rev.
87
,
29
(
1987
).
48.
G.
Benedek
and
N.
Garcia
,
Surf. Sci.
103
,
1143
(
1981
).
49.
A.
Bilić
and
B.
Gumhalter
,
Phys. Rev. B
52
,
12307
(
1995
);
B.
Gumhalter
and
D. C.
Langreth
,
Phys. Rev. B
60
,
2789
(
1999
).
50.
H.
Schlichting
,
D.
Menzel
,
T.
Brunner
, and
W.
Brenig
,
J. Chem. Phys.
97
,
4453
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.