Proton, deuteron, and carbon NMR methods were applied to study various isotopic species of supercooled and glassy propylene carbonate. The molecular diffusion was investigated via static field gradient diffusometry and yielded evidence for a particularly pronounced enhancement of the translational over the reorientational dynamics. The latter was monitored using measurements of spin-lattice relaxation times and of two-time stimulated echoes. The sin–sin correlation functions exhibited a pronounced dependence on the evolution times. From these results it is concluded that the geometry of molecular reorientation can be described as a superposition of moderately small jump angles (about 30°) and a quasi-diffusive component which is responsible for about one-third of the total angular displacement. Finally, four-time stimulated echoes confirmed that the nonexponential relaxation in propylene carbonate is dynamically heterogeneous in nature.

1.
R.
Graf
,
A.
Heuer
, and
H. W.
Spiess
,
Phys. Rev. Lett.
80
,
5738
(
1998
).
2.
G.
Hinze
and
H.
Sillescu
,
J. Chem. Phys.
104
,
314
(
1996
), and references cited therein.
3.
U.
Schneider
,
P.
Lunkenheimer
,
R.
Brand
, and
A.
Loidl
,
Phys. Rev. E
59
,
6924
(
1999
), and references cited therein.
4.
F.
Stickel
,
E. W.
Fischer
, and
R.
Richert
,
J. Chem. Phys.
104
,
2043
(
1996
).
5.
C. A.
Angell
,
L.
Boehm
,
M.
Oguni
, and
D. L.
Smith
,
J. Mol. Liq.
56
,
275
(
1993
).
6.
S.
Takahara
and
O.
Yamamuro
,
J. Phys. Chem.
99
,
9589
(
1995
).
7.
R.
Böhmer
,
K. L.
Ngai
,
C. A.
Angell
, and
D. J.
Plazek
,
J. Chem. Phys.
99
,
4201
(
1993
).
8.
W. M.
Du
,
G.
Li
,
H. Z.
Cummins
,
M.
Fuchs
,
J.
Toulouse
, and
L. A.
Knauss
,
Phys. Rev. E
49
,
2192
(
1994
), carried out measurements in the range 210 K<T<350 K.
9.
L.
Börjesson
,
M.
Elmroth
, and
L. M.
Torell
,
Chem. Phys.
149
,
209
(
1990
), carried out measurements in the range 175 K<T<345 K.
10.
C. A.
Angell
,
J. Phys. Chem. Solids
49
,
863
(
1988
).
11.
R. Böhmer and C. A. Angell, in Disorder Effects on Relaxational Processes, edited by R. Richert and A. Blumen (Springer, Berlin, 1994), pp. 11–54.
12.
J.
Wuttke
,
M.
Ohl
,
M.
Goldammer
,
S.
Roth
,
U.
Schneider
,
P.
Lunkenheimer
,
R.
Kahn
,
B.
Rufflé
,
R.
Lechner
, and
M. A.
Berg
,
Phys. Rev. E
61
,
2730
(
2000
).
13.
W. Götze, in Liquids, Freezing, and the Glass Transition, Part I, edited by J. P. Hansen, D. Levesque, and J. Zinn-Justin (North-Holland, Amsterdam, 1991), p. 287.
14.
I.
Chang
and
H.
Sillescu
,
J. Phys. Chem. B
101
,
8794
(
1997
), and references cited therein.
15.
J.
Qian
,
R.
Hentschke
, and
A.
Heuer
,
J. Chem. Phys.
110
,
4514
(
1999
);
J. Qian, Dissertation, Universität Mainz, 1999.
16.
G. Fleischer and F. Fujara, in NMR—Basic Principles and Progress (Springer, Berlin, 1994), Vol. 30, pp. 159–207.
17.
A. K. M.
Masood
,
R. A.
Pethrick
,
A. J.
Barlow
,
M. G.
Kim
,
R. P.
Plowiec
,
D.
Barraclough
, and
J. A.
Ladd
,
Adv. Mol. Relax. Processes
9
,
29
(
1976
) report proton T1 data for 260 K<T<305 K.
18.
K. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid State NMR and Polymers (Academic, London, 1994).
19.
B.
Geil
,
F.
Fujara
, and
H.
Sillescu
,
J. Magn. Reson.
130
,
18
(
1998
).
20.
G.
Hinze
,
Phys. Rev. E
57
,
2010
(
1998
).
21.
R.
Böhmer
and
G.
Hinze
,
J. Chem. Phys.
109
,
241
(
1998
).
22.
U.
Tracht
,
A.
Heuer
, and
H. W.
Spiess
,
J. Chem. Phys.
111
,
3720
(
1999
).
23.
D.
van Dusschoten
,
U.
Tracht
,
A.
Heuer
, and
H. W.
Spiess
,
J. Phys. Chem. A
103
,
8359
(
1999
).
24.
A. M.
Wachner
and
K. R.
Jeffrey
,
J. Chem. Phys.
111
,
10611
(
1999
).
25.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Phys. Rev. Lett.
66
,
3020
(
1991
).
26.
C. Y.
Wang
and
M. D.
Ediger
,
J. Phys. Chem. B
103
,
4177
(
1999
);
M. D. Ediger, Annu. Rev. Phys. Chem. (preprint).
27.
R.
Böhmer
,
G.
Hinze
,
G.
Diezemann
,
B.
Geil
, and
H.
Sillescu
,
Europhys. Lett.
36
,
55
(
1996
).
28.
B.
Schiener
,
R. V.
Chamberlin
,
G.
Diezemann
, and
R.
Böhmer
,
J. Chem. Phys.
107
,
7746
(
1997
).
29.
For reviews see,
R.
Böhmer
,
Curr. Opin. Solid State Mater. Sci.
3
,
378
(
1998
);
H.
Sillescu
,
J. Non-Cryst. Solids
243
,
81
(
1999
).
30.
Corresponding results will be published elsewhere by F. Qi et al. (unpublished).
For a preliminary account see
R.
Böhmer
,
G.
Hinze
,
T.
Jörg
,
F.
Qi
, and
H.
Sillescu
,
J. Phys.: Condens. Matter
12
,
A383
(
2000
).
31.
A.
Döß
,
G.
Hinze
,
R.
Böhmer
,
H.
Sillescu
,
H.
Kolshorn
,
M.
Vogel
, and
H.
Zimmermann
,
J. Chem. Phys.
112
,
5884
(
2000
).
32.
G.
Hinze
,
R.
Böhmer
,
G.
Diezemann
, and
H.
Sillescu
,
J. Magn. Reson.
131
,
218
(
1998
).
33.
J.
Wuttke
,
I.
Chang
,
O. G.
Randl
,
F.
Fujara
, and
W.
Petry
,
Phys. Rev. E
54
,
5364
(
1996
).
34.
A.
Bondeau
and
J.
Huck
,
J. Phys. (France)
46
,
1717
(
1985
).
35.
J. T.
Edward
,
J. Chem. Educ.
47
,
261
(
1970
).
36.
W.
Schnauss
,
F.
Fujara
, and
H.
Sillescu
,
J. Chem. Phys.
97
,
1378
(
1992
).
37.
G.
Hinze
,
G.
Diezemann
, and
H.
Sillescu
,
J. Phys. Chem.
104
,
430
(
1996
).
38.
C. P.
Lindsey
and
G. D.
Patterson
,
J. Chem. Phys.
73
,
3348
(
1980
).
39.
The overall isotropy of the reorientation process was also confirmed by preliminary measurements of cos–cos correlation functions. This does not require adjustment of spin-relaxation times since here the decay time of the corresponding spin order (i.e., T1) can be determined independently.
40.
J. C.
Dyre
,
Phys. Rev. E
59
,
2458
(
1999
);
J. C.
Dyre
,
Phys. Rev. E
59
,
7243
(
1999
).
41.
R.
Böhmer
,
R. V.
Chamberlin
,
G.
Diezemann
,
B.
Geil
,
A.
Heuer
,
G.
Hinze
,
S. C.
Kuebler
,
R.
Richert
,
B.
Schiener
,
H.
Sillescu
,
H. W.
Spiess
,
U.
Tracht
, and
M.
Wilhelm
,
J. Non-Cryst. Solids
235–237
,
1
(
1998
).
42.
By proper choice of pulse phases and pulse lengths various other four-time functions may be measured, see Ref. 32. However, in order to determine the subensemble re-equilibration time, it usually suffices to determine one of them, e.g., F4 as given in the text.
43.
R.
Böhmer
,
G.
Diezemann
,
G.
Hinze
, and
H.
Sillescu
,
J. Chem. Phys.
108
,
890
(
1998
).
44.
S. C.
Kuebler
,
A.
Heuer
, and
H. W.
Spiess
,
Phys. Rev. E
56
,
741
(
1997
); see in particular their Eq. (8).
45.
R.
Böhmer
,
Phase Trans.
65
,
211
(
1998
).
46.
C.
Hansen
,
F.
Stickel
,
R.
Richert
, and
E. W.
Fischer
,
J. Chem. Phys.
108
,
6408
(
1998
).
47.
T.
Blochowicz
,
A.
Kudlik
,
S.
Benkhof
,
J.
Senker
,
E.
Rössler
, and
G.
Hinze
,
J. Chem. Phys.
110
,
12011
(
1999
).
48.
For PC no Johari–Goldstein type secondary relaxation is obvious. Only a so-called high-frequency wing shows up, Ref. 3, unless PC is aged for a considerable amount of time;
U.
Schneider
,
R.
Brand
,
P.
Lunkenheimer
, and
A.
Loidl
, http://xxx.lanl.gov/abs/cond-mat/0001055.
49.
G.
Diezemann
,
H.
Sillescu
,
G.
Hinze
, and
R.
Böhmer
,
Phys. Rev. E
57
,
4398
(
1998
);
G.
Diezemann
,
R.
Böhmer
,
G.
Hinze
, and
H.
Sillescu
,
J. Non-Cryst. Solids
235–237
,
121
(
1998
).
50.
G.
Diezemann
,
J. Chem. Phys.
107
,
10112
(
1997
).
51.
S. S. N.
Murthy
and
S. K.
Nayak
,
J. Chem. Phys.
99
,
5362
(
1993
);
C.
Hansen
,
F.
Stickel
,
T.
Berger
,
R.
Richert
, and
E. W.
Fischer
,
J. Chem. Phys.
107
,
1086
(
1997
).
52.
I.
Chang
,
F.
Fujara
,
B.
Geil
,
G.
Heuberger
,
T.
Mangel
, and
H.
Sillescu
,
J. Non-Cryst. Solids
172–174
,
248
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.