The accuracy of standard ab initio wave-function calculations of atomization energies and reaction enthalpies has been assessed by comparing with experimental data for 16 small closed-shell molecules and 13 isogyric reactions. The investigated wave-function models are Hartree–Fock (HF), Møller–Plesset second-order perturbation theory (MP2), coupled-cluster theory with singles and doubles excitations (CCSD) and CCSD with perturbative triple-excitation corrections [CCSD(T)]; the one-electron basis sets used are the correlation-consistent cc-pVxZ and cc-pCVxZ basis sets with cardinal numbers x=D, T, Q, 5, and 6. Results close to the basis-set limit have been obtained by using two-point extrapolations. In agreement with previous studies, it is found that the intrinsic error of the CCSD(T) method is less than chemical accuracy (≈4 kJ/mol) for both atomization energies and reaction enthalpies. The mean and maximum absolute errors of the best CCSD(T) calculations are 0.8 and 2.3 kJ/mol for the atomization energies and 1.0 and 2.3 kJ/mol for the reaction enthalpies. Chemical accuracy is obtained already from the extrapolations based on the cc-pCVTZ and cc-pCVQZ basis sets—with mean and maximum absolute errors of 1.7 and 4.0 kJ/mol for atomization energies and 1.3 and 3.1 kJ/mol for reaction enthalpies. The intrinsic errors of the Hartree–Fock, MP2, and CCSD wave-function models are significantly larger than for CCSD(T). For CCSD and MP2, the mean absolute errors in the basis set limit are about 32 kJ/mol for the atomization energies and about 10 and 15 kJ/mol, respectively, for the reaction enthalpies. For the Hartree–Fock model, the mean absolute errors are 405 and 29 kJ/mol for atomization energies and reaction enthalpies, respectively. Correlation of the core electrons is important in order to obtain accurate results with CCSD(T). Without compromising the accuracy, the core contribution may be calculated with a basis set that has one cardinal number lower than that used for the valence correlation contribution. Basis-set extrapolation should be used for both the core and the valence contributions.

1.
F. Jensen, Introduction to Computational Chemistry (Wiley, Chichester, 1999).
2.
T. Helgaker, P. Jørgensen, and J. Olsen, in Molecular Electronic Structure Theory (Wiley, Chichester, 2000).
3.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
4.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
2975
(
1994
).
5.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
6.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
103
,
4572
(
1995
).
7.
A.
Wilson
,
T.
van Mourik
, and
T. H.
Dunning
, Jr.
,
J. Mol. Struct.: THEOCHEM
388
,
339
(
1996
).
8.
T. H. Dunning, Jr., K. A. Peterson, and D. E. Woon, in The Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998).
9.
K. L. Bak, A. Halkier, P. Jørgensen, J. Olsen, T. Helgaker, and W. Klopper (unpublished).
10.
C.
Schwartz
,
Phys. Rev.
126
,
1015
(
1962
).
11.
D. P.
Carroll
,
H. J.
Silverstone
, and
R. M.
Metzger
,
J. Chem. Phys.
71
,
4142
(
1979
).
12.
R. N.
Hill
,
J. Chem. Phys.
83
,
1173
(
1985
).
13.
W.
Kutzelnigg
and
J. D.
Morgan
III
,
J. Chem. Phys.
96
,
4484
(
1992
).
14.
J.
Noga
,
W.
Kutzelnigg
, and
W.
Klopper
,
Chem. Phys. Lett.
199
,
497
(
1992
).
15.
J. Noga, W. Klopper, and W. Kutzelnigg, in Recent Advances in Coupled-Cluster Methods, Recent Advances in Computational Chemistry, edited by R. J. Bartlett (World Scientific, Singapore, 1997).
16.
W. Klopper, in The Encyclopedia of Computational Chemistry, edited by P. v. R. Schleyer, N. L. Allinger, T. Clark, J. Gasteiger, P. A. Kollman, H. F. Schaefer III, and P. R. Schreiner (Wiley, Chichester, 1998).
17.
D. J.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
18.
D. J.
Feller
,
J. Chem. Phys.
98
,
7059
(
1993
).
19.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
20.
J. M. L.
Martin
,
Chem. Phys. Lett.
259
,
669
(
1996
).
21.
T.
Helgaker
,
W.
Klopper
,
H.
Koch
, and
J.
Noga
,
J. Chem. Phys.
106
,
9639
(
1997
).
22.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
,
H.
Koch
,
J.
Olsen
, and
A. K.
Wilson
,
Chem. Phys. Lett.
286
,
243
(
1998
).
23.
J. M. L.
Martin
and
G.
de Oliveira
,
J. Chem. Phys.
111
,
1843
(
1999
).
24.
J. M. L.
Martin
and
P. R.
Taylor
,
J. Chem. Phys.
106
,
8620
(
1997
).
25.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
108
,
154
(
1998
).
26.
D.
Feller
and
K. A.
Peterson
,
J. Chem. Phys.
110
,
8384
(
1999
).
27.
P. L.
Fast
,
M. L.
Sánchez
, and
D. G.
Truhlar
,
J. Chem. Phys.
111
,
2921
(
1999
).
28.
W.
Klopper
,
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
, and
T.
Helgaker
,
J. Phys. B
32
,
R103
(
1999
).
29.
G. A.
Petersson
,
D. K.
Malick
,
W. G.
Wilson
,
J. W.
Ochterski
,
J. A.
Montgomery
, Jr.
, and
M.
Frisch
,
J. Chem. Phys.
109
,
10570
(
1998
).
30.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
31.
T.
Helgaker
,
J.
Gauss
,
P.
Jørgensen
, and
J.
Olsen
,
J. Chem. Phys.
106
,
6430
(
1997
).
32.
K. L. Bak, P. Jørgensen, J. Olsen, T. Helgaker, and J. Gauss (to be submitted).
33.
ACESII, an ab initio program system, authored by J. T. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett.
34.
T. Helgaker, H. J. Aa. Jensen, P. Jørgensen, H. Koch, J. Olsen, H. Ågren, T. Andersen, K. L. Bak, V. Bakken, O. Christiansen, P. Dahle, E. K. Dalskov, T. Enevoldsen, A. Halkier, H. Heiberg, D. Jonsson, S. Kirpekar, R. Kobayashi, A. Sánchez de Merás, K. V. Mikkelsen, P. Norman, M. J. Packer, K. Ruud, T. Saue, P. R. Taylor, and O. Vahtras, DALTON, an ab initio electronic structure program.
35.
H.
Koch
,
O.
Christiansen
,
R.
Kobayashi
,
P.
Jørgensen
, and
T.
Helgaker
,
Chem. Phys. Lett.
228
,
233
(
1994
).
36.
H.
Koch
,
A.
Sánchez de Merás
,
T.
Helgaker
, and
O.
Christiansen
,
J. Chem. Phys.
104
,
4157
(
1996
).
37.
H.
Koch
,
P.
Jørgensen
, and
T.
Helgaker
,
J. Chem. Phys.
104
,
9528
(
1996
).
38.
C. E. Moore, in Atomic Energy Levels Circ 467 (National Bureau of Standards, Washington, D.C., 1949), Vol. 1.
39.
F.
Jensen
,
J. Chem. Phys.
110
,
6601
(
1999
).
40.
A.
Halkier
,
T.
Helgaker
,
P.
Jørgensen
,
W.
Klopper
, and
J.
Olsen
,
Chem. Phys. Lett.
302
,
437
(
1999
).
41.
K. A.
Peterson
,
A. K.
Wilson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
Theor. Chem. Acc.
97
,
251
(
1997
).
42.
K. A.
Peterson
and
T. H.
Dunning
, Jr.
,
THEOCHEM
400
,
93
(
1997
).
43.
M. J. O.
Deegan
and
P. J.
Knowles
,
Chem. Phys. Lett.
227
,
321
(
1994
).
44.
K. L.
Bak
,
P.
Jørgensen
,
J.
Olsen
,
T.
Helgaker
, and
J.
Gauss
,
Chem. Phys. Lett.
317
,
116
(
2000
).
45.
P.
Piecuch
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
110
,
6103
(
1999
).
46.
M. W.
Chase
, Jr.
,
C. A.
Davies
,
J. R.
Downey
, Jr.
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
, JANAF Thermochemical Tables, 3rd ed.,
J. Phys. Chem. Ref. Data Monogr.
4
,
9
(
1998
).
47.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand–Reinhold, New York, 1979).
48.
K. E.
McCulloh
and
V. H.
Dibeler
,
J. Chem. Phys.
64
,
4445
(
1976
).
49.
P.
Jensen
and
P. R.
Bunker
,
J. Chem. Phys.
89
,
1327
(
1988
).
50.
C. C.
Hayden
,
D. M.
Neumark
,
K.
Shobatake
,
R. K.
Sparks
, and
Y. T.
Lee
,
J. Chem. Phys.
76
,
3607
(
1982
).
51.
R. N.
Dixon
,
J. Chem. Phys.
104
,
6905
(
1996
).
52.
C. E.
Dateo
,
T. J.
Lee
, and
D. W.
Schwenke
,
J. Chem. Phys.
101
,
5853
(
1994
).
53.
A. R.
Hoy
,
I. M.
Mills
, and
G.
Strey
,
Mol. Phys.
24
,
1265
(
1972
).
54.
B.
Kuhn
,
T. R.
Rizzo
,
D.
Luckhaus
,
M.
Quack
, and
M. A.
Suhm
,
J. Chem. Phys.
111
,
2565
(
1999
).
55.
J. M. L.
Martin
,
T. L.
Lee
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
8361
(
1992
).
56.
G. P.
Morley
,
I. R.
Lambert
,
M. R.
Ashfold
,
K. N.
Rosser
, and
C. H.
Western
,
J. Chem. Phys.
97
,
3157
(
1992
).
57.
Y.
Huang
,
S. A.
Barts
, and
J. P.
Halpern
,
J. Phys. Chem.
96
,
425
(
1992
).
58.
T. J.
Lee
,
C. E.
Dateo
,
B.
Gazdy
, and
J. M.
Bowman
,
J. Phys. Chem.
97
,
8937
(
1993
).
59.
S.
Carter
,
I. M.
Mills
, and
N. C.
Handy
,
J. Chem. Phys.
99
,
4379
(
1993
).
60.
D. L.
Baulch
,
R. A.
Cox
,
P. J.
Crutzner
,
R. F.
Hampson
, Jr.
,
J. A.
Kerr
,
J.
Troe
, and
R. T.
Watson
,
J. Phys. Chem. Ref. Data
11
,
327
(
1982
).
61.
J. B. Pedley, R. D. Naylor, and S. D. Kirby, Thermodynamical Data of Organic Compounds, 2nd ed. (Chapman and Hall, New York, 1986).
62.
D. E.
Reisner
,
R. W.
Field
,
J. L.
Kinsey
, and
H. L.
Dai
,
J. Chem. Phys.
80
,
5968
(
1984
).
63.
J. L.
Teffo
,
O. N.
Sulakshina
, and
V. J.
Perevalov
,
J. Mol. Spectrosc.
156
,
48
(
1992
).
64.
D. D.
Wagman
,
W. H.
Evans
,
V. B.
Parker
,
R. H.
Shumm
,
I.
Halow
,
S. M.
Bailey
,
K. L.
Churney
, and
R. L.
Nuttall
,
J. Phys. Chem. Ref. Data
11
, Suppl. 2 (
1982
).
65.
B. C.
Smith
and
J. S.
Winn
,
J. Chem. Phys.
89
,
4638
(
1988
).
66.
D. L.
Gray
and
A. G.
Robiette
,
Mol. Phys.
37
,
1901
(
1978
).
67.
J. M. L.
Martin
and
P. R.
Taylor
,
Chem. Phys. Lett.
248
,
336
(
1996
).
This content is only available via PDF.
You do not currently have access to this content.