We study reaction–diffusion systems which involve processes that occur on different time scales. In particular, we apply a multiscale analysis to obtain a reduced description of the slow dynamics. Under certain assumptions this reduction yields a new set of reaction–diffusion equations with rescaled diffusion coefficients. We analyze the Selkov model [E. E. Selkov, Eur. J. Biochem. 4, 79 (1968)] and the ferrocyanide–iodide–sulfite reaction [E. C. Edblom et al., J. Am. Chem. Soc. 108, 2826 (1986)] to determine whether the rescaling in this case may account for the difference of diffusivities that the formation of certain types of patterns requires.
REFERENCES
1.
2.
J. D. Murray, Mathematical Biology (Springer, New York, 1989).
3.
4.
5.
V.
Castets
, E.
Dulos
, J.
Boissonade
, and P.
De Kepper
, Phys. Rev. Lett.
64
, 2953
(1990
);P.
DeKepper
, V.
Castes
, E.
Dulos
, and J.
Boissonade
, Physica D
49
, 161
(1991
);6.
7.
8.
S. P.
Dawson
, A.
Lawniczak
, and R.
Kapral
, J. Chem. Phys.
100
, 5211
(1994
).9.
10.
N. L.
Allbritton
, T.
Meyer
, and L.
Stryer
, Science
258
, 1812
(1992
).11.
12.
E. C.
Edblom
, M.
Orban
, and I. R.
Epstein
, J. Am. Chem. Soc.
108
, 2826
(1986
).13.
A biologically relevant metabolic pathway responsible for the conversion of glucose in carbon dioxide and water in cells with production of ATP.
14.
B.
Hasslacher
, R.
Kapral
, and A.
Lawniczak
, Chaos
3
, 7
(1993
). Actually, the model considered in this article is an extension of the one originally introduced by Selkov. In any case, the differences between these two models do not affect our conclusions.15.
K. J.
Lee
, W. D.
McCormick
, Q.
Ouyang
, and H. L.
Swinney
, Science
261
, 192
(1993
);K. J.
Lee
, W. D.
McCormick
, J. E.
Pearson
, and H. L.
Swinney
, Nature (London)
369
, 215
(1994
).16.
17.
W.
Reynolds
, J. E.
Pearson
, and S. P.
Dawson
, Phys. Rev. Lett.
72
, 2797
(1994
);W.
Reynolds
, S. P.
Dawson
, and J. E.
Pearson
, Phys. Rev. E
56
, 185
(1997
);S. P. Dawson, M. V. D’Angelo, and J. E. Pearson (in preparation).
18.
19.
J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields (Springer, New York, 1986).
20.
R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics (Springer, New York, 1997).
21.
C. L.
Frenzen
and P. K.
Maini
, J. Math. Biol.
26
, 689
(1988
).22.
23.
E. J. Hinch, Perturbation Methods (Cambridge University Press, Mexico, 1992), p. 116.
24.
See EPAPS document No. E-JCPSA6-111-518948 for a detailed derivation.
This document may be retrieved via the EPAPS homepage (http://www.aip.org/pubservs/epaps.html) or from ftp.aip.org in the directory /epaps/. See the EPAPS homepage for more information.
25.
See, e.g., R. Kapral, S. Consta, and L. McWhirther, in Classical and Quantum Dynamics in Condensed Phase Systems, edited by B. J. Berne, G. Ciccotti and D. Coker (World Scientific, Singapore, 1998), p. 583;
also at http://www.chem.utoronto.ca/∼rkapral/Papers/lericif/lericif.html for a discussion about the limitations of this approach.
26.
In order to simplify the notation we do not write explicitly the dependence of the concentrations on x, but actually the concentrations are functions of both x, T and τ.
27.
An enzyme is said to be allosteric when its affinity for a given molecule can be enhanced or reduced when another molecule is bound to a specific binding site of it.
28.
A more accurate model for the glycolytic pathway was proposed by A. Goldbeter, see e.g., Biochemical Oscillations and Cellular Rhythms. The Molecular Bases of Periodic and Chaotic Behaviour (Cambridge University Press, Cambridge, 1996).
29.
30.
31.
M. V. D’Angelo, S. Ponce Dawson, and J. E. Pearson (in preparation).
This content is only available via PDF.
© 2000 American Institute of Physics.
2000
American Institute of Physics
You do not currently have access to this content.