Restricted Hartree–Fock 6-31G calculations of electrical and mechanical anharmonicity contributions to the longitudinal vibrational second hyperpolarizability have been carried out for eight homologous series of conjugated oligomers—polyacetylene, polyyne, polydiacetylene, polybutatriene, polycumulene, polysilane, polymethineimine, and polypyrrole. To draw conclusions about the limiting infinite polymer behavior, chains containing up to 12 heavy atoms along the conjugated backbone were considered. In general, the vibrational hyperpolarizabilities are substantial in comparison with their static electronic counterparts for the dc-Kerr and degenerate four-wave mixing processes (as well as for static fields) but not for electric field-induced second harmonic generation or third harmonic generation. Anharmonicity terms due to nuclear relaxation are important for the dc-Kerr effect (and for the static hyperpolarizability) in the σ-conjugated polymer, polysilane, as well as the nonplanar π systems polymethineimine and polypyrrole. Restricting polypyrrole to be planar, as it is in the crystal phase, causes these anharmonic terms to become negligible. When the same restriction is applied to polymethineimine the effect is reduced but remains quantitatively significant due to the first-order contribution. We conclude that anharmonicity associated with nuclear relaxation can be ignored, for semiquantitative purposes, in planar π-conjugated polymers. The role of zero-point vibrational averaging remains to be evaluated.

1.
D. M.
Bishop
,
Adv. Chem. Phys.
104
,
1
(
1998
).
2.
B. Kirtman, in Theoretical and Computational Modeling of NLO and Electronic Materials, American Chemical Society Series, edited by S. P. Karna and A. T. Yeates (American Chemical Society, New York, 1996), Vol. 628, p. 58.
3.
B.
Kirtman
and
B.
Champagne
,
Int. Rev. Phys. Chem.
16
,
389
(
1997
).
4.
B.
Champagne
and
B.
Kirtman
,
Chem. Phys.
245
,
213
(
1999
).
5.
B.
Kirtman
and
M.
Hasan
,
J. Chem. Phys.
96
,
470
(
1992
).
6.
B.
Kirtman
,
B.
Champagne
, and
J. M.
André
,
J. Chem. Phys.
104
,
4125
(
1996
).
7.
B.
Champagne
,
Chem. Phys. Lett.
261
,
57
(
1996
).
8.
B.
Champagne
,
E. A.
Perpète
,
J. M.
André
, and
B.
Kirtman
,
Synth. Met.
85
,
1047
(
1997
).
9.
E. A.
Perpète
,
B.
Champagne
, and
B.
Kirtman
,
J. Chem. Phys.
107
,
2463
(
1997
).
10.
B.
Champagne
,
Int. J. Quantum Chem.
65
,
689
(
1997
).
11.
E. A.
Perpète
,
B.
Champagne
,
J. M.
André
, and
B.
Kirtman
,
J. Mol. Struct.
425
,
115
(
1998
).
12.
B.
Champagne
,
E. A.
Perpète
,
Th.
Legrand
,
D.
Jacquemin
, and
J. M.
André
,
J. Chem. Soc., Faraday Trans.
94
,
1547
(
1998
).
13.
B.
Champagne
,
Th.
Legrand
,
E. A.
Perpète
,
O.
Quinet
, and
J. M.
André
,
Collect. Czech. Chem. Commun.
63
,
1295
(
1998
).
14.
E. A.
Perpète
,
J. M.
André
, and
B.
Champagne
,
J. Chem. Phys.
109
,
4624
(
1998
).
15.
P.
Zuliani
,
M.
Del Zoppo
,
C.
Castiglioni
,
G.
Zerbi
,
S. R.
Marder
, and
J. W.
Perry
,
J. Chem. Phys.
103
,
9935
(
1995
).
16.
P.
Zuliani
,
M.
Del Zoppo
,
C.
Castiglioni
,
G.
Zerbi
,
C.
Andraud
,
T.
Brotin
, and
A.
Collet
,
J. Phys. Chem.
99
,
16242
(
1995
).
17.
C.
Castiglioni
,
M.
Del Zoppo
, and
G.
Zerbi
,
Phys. Rev. B
53
,
13319
(
1996
).
18.
H. S.
Kim
,
M.
Cho
, and
S. J.
Jeon
,
J. Chem. Phys.
107
,
1936
(
1997
).
19.
A.
Painelli
,
Chem. Phys. Lett.
285
,
352
(
1998
).
20.
H.
Torii
,
K.
Furuya
, and
M.
Tasumi
,
J. Phys. Chem.
102
,
8422
(
1998
).
21.
D. M.
Bishop
and
B.
Kirtman
,
Phys. Rev. B
56
,
2273
(
1997
).
22.
D. M.
Bishop
,
B.
Champagne
, and
B.
Kirtman
,
J. Chem. Phys.
109
,
9987
(
1998
).
23.
Martí
,
J. L.
Andrés
,
J.
Bertrán
, and
M.
Duran
,
Mol. Phys.
80
,
625
(
1993
).
24.
D. M.
Bishop
,
B.
Kirtman
,
H. A.
Kurtz
, and
J. E.
Rice
,
J. Chem. Phys.
98
,
8024
(
1993
).
25.
D. M.
Bishop
,
J.
Pipin
, and
B.
Kirtman
,
J. Chem. Phys.
102
,
6778
(
1995
).
26.
D. M.
Bishop
and
J.
Pipin
,
J. Chem. Phys.
103
,
4980
(
1995
).
27.
D. M.
Bishop
and
E. K.
Dalskov
,
J. Chem. Phys.
104
,
1004
(
1996
).
28.
J. M.
Luis
,
M.
Duran
, and
J. L.
Andrès
,
J. Chem. Phys.
107
,
1501
(
1997
).
29.
J. M.
Luis
,
J.
Martí
,
M.
Duran
, and
J. L.
Andrés
,
Chem. Phys.
217
,
29
(
1997
).
30.
J. M.
Luis
,
J.
Martí
,
M.
Duran
,
J. L.
Andrés
, and
B.
Kirtman
,
J. Chem. Phys.
108
,
4123
(
1998
).
31.
B.
Champagne
,
Chem. Phys. Lett.
287
,
185
(
1998
).
32.
D. M.
Bishop
,
F. L.
Gu
, and
S. M.
Cybulski
,
J. Chem. Phys.
109
,
8407
(
1998
).
33.
O.
Quinet
and
B.
Champagne
,
J. Chem. Phys.
109
,
10594
(
1998
).
34.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
95
,
2646
(
1991
).
35.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
97
,
5255
(
1992
).
36.
D. M.
Bishop
,
J. M.
Luis
, and
B.
Kirtman
,
J. Chem. Phys.
108
,
10013
(
1998
).
37.
C. Flytzanis, in Quantum Electronics, edited by H. Rabin and C. L. Tang (Academic, New York, 1975), Vol. IA, p. 9.
38.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
109
,
9674
(
1998
).
39.
D. M.
Bishop
,
M.
Hasan
, and
B.
Kirtman
,
J. Chem. Phys.
103
,
4157
(
1995
).
40.
B.
Kirtman
,
J. M.
Luis
, and
D. M.
Bishop
,
J. Chem. Phys.
108
,
10008
(
1998
).
41.
J. M.
Luis
,
M.
Duran
,
J. L.
Andrés
,
B.
Champagne
, and
B.
Kirtman
,
J. Chem. Phys.
111
,
875
(
1999
).
42.
B. J.
Orr
and
J. F.
Ward
,
Mol. Phys.
20
,
513
(
1971
);
D. M.
Bishop
,
J. Chem. Phys.
100
,
6535
(
1994
).
43.
D. M.
Bishop
,
B.
Kirtman
, and
B.
Champagne
,
J. Chem. Phys.
107
,
5780
(
1997
).
44.
P. W.
Langhoff
,
M.
Karplus
, and
R. P.
Hurst
,
J. Chem. Phys.
44
,
505
(
1966
);
T. C.
Caves
and
M.
Karplus
,
J. Chem. Phys.
50
,
3649
(
1969
);
C. E.
Dykstra
and
P. G.
Jasien
,
Chem. Phys. Lett.
109
,
388
(
1984
);
H.
Sekino
and
R. J.
Bartlett
,
J. Chem. Phys.
85
,
976
(
1986
);
S. P.
Karna
and
M.
Dupuis
,
J. Comput. Chem.
12
,
487
(
1991
).
45.
GAUSSIAN 94, Revision B.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. Al-Laham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. Defrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, Pennsylvania, 1995.
46.
P. J. Davis and P. Rabinowitz, Numerical Integration (Blaisdell, London, 1967), p. 166;
D.
Jacquemin
,
B.
Champagne
, and
J. M.
André
,
Int. J. Quantum Chem.
65
,
679
(
1997
).
47.
C.
Eckart
,
Phys. Rev.
47
,
552
(
1935
);
S. R.
Polo
,
J. Chem. Phys.
24
,
1133
(
1956
).
48.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
49.
G. J. B.
Hurst
,
M.
Dupuis
, and
E.
Clementi
,
J. Chem. Phys.
89
,
385
(
1988
).
50.
J. L.
Toto
,
T. T.
Toto
,
C. P.
de Melo
,
M.
Hasan
, and
B.
Kirtman
,
Chem. Phys. Lett.
244
,
59
(
1995
);
J. L.
Toto
,
T. T.
Toto
, and
C. P.
de Melo
,
Chem. Phys. Lett.
245
,
660
(
1995
);
J. L.
Toto
,
T. T.
Toto
,
C. P.
de Melo
, and
K.
Robins
,
J. Chem. Phys.
102
,
8048
(
1995
).
51.
J. O.
Morley
,
J. Phys. Chem.
99
,
10166
(
1995
).
52.
E. A. Perpète and D. Jacquemin (unpublished).
53.
The 2α]L;ω=0I and 4]L;ω=0II results for PSi differ from those reported in Ref. 14 because in the latter case, the finite field optimization procedure was carried out by blocking the central Si–Si bond so as to align the field-free geometry along the longitudinal axis. Blocking the central bond prevents the Eckart conditions from being satisfied and, therefore, the FF results do not match the SOM values. Nevertheless, when the chain length grows this “blocking” approach becomes suitable because the direction of the field-induced dipole moment coincides with the longitudinal axis and no Eckart rotation is necessary.
This content is only available via PDF.
You do not currently have access to this content.