Translational diffusion of fluorescent molecules on curved surfaces (micelles, vesicles, and proteins) depolarizes the fluorescence. A Monte Carlo simulation method was developed to obtain the fluorescence anisotropy decays for the general case of molecular dipoles tilted at an angle α to the surface normal. The method is used to obtain fluorescence anisotropy decay due to diffusion of tilted dipoles on a spherical surface, which matched well with the exact solution for the sphere. The anisotropy decay is a single exponential for α=0°, a double exponential for α=90°, and three exponentials for intermediate angles. The slower decay component(s) for α≠0 arise due to the geometric phase factor. Although the anisotropy decay equation contains three exponentials, there are only two parameters, namely α and the rate constant, Dtr/R2, where Dtr is the translational diffusion coefficient and R is the radius of the sphere. It is therefore possible to determine the orientation angle and translational diffusion coefficient from the experimental fluorescence anisotropy data. This method was applied in interpreting the fluorescence anisotropy decay of Nile red in SDS micelles. It is necessary, however, to include two other independent mechanisms of fluorescence depolarization for molecules intercalated in micelles. These are the wobbling dynamics of the molecule about the molecular long axis, and the rotation of the spherical micelle as a whole. The fitting of the fluorescence anisotropy decay to the full equation gave the tilt angle of the molecular dipoles to be 1±2° and the translational diffusion coefficient to be 1.3±0.1×10−10 m2/s.

1.
G. R. Fleming, Chemical Applications of Ultrafast Spectroscopy (Oxford University Press, New York, 1986).
2.
W. W.
Mantulin
and
G.
Weber
,
J. Chem. Phys.
66
,
4092
(
1977
).
3.
R. L.
Christensen
,
R. C.
Drake
, and
D.
Philips
,
J. Phys. Chem.
90
,
5960
(
1986
).
4.
U. K. A.
Klein
and
H. P.
Haar
,
Chem. Phys. Lett.
58
,
531
(
1978
).
5.
A. J. W. G.
Visser
,
K.
Vos
,
A. V.
Hoek
, and
J. S.
Santema
,
J. Phys. Chem.
92
,
759
(
1988
).
6.
E. L.
Quitevis
,
A. H.
Marcus
, and
M. D.
Fayer
,
J. Phys. Chem.
97
,
5762
(
1993
).
7.
N. C.
Maiti
,
S.
Mazumdar
, and
N.
Periasamy
,
J. Phys. Chem.
99
,
10708
(
1995
).
8.
N. C.
Maiti
,
M. M. G.
Krishna
,
P. J.
Britto
, and
N.
Periasamy
,
J. Phys. Chem. B
101
,
11051
(
1997
).
9.
B. W.
Van der Meer
,
K. H.
Cheng
, and
S. Y.
Chen
,
Biophys. J.
58
,
1517
(
1990
).
10.
S. Y.
Chen
,
K. H.
Cheng
,
B. W.
Van der Meer
, and
J. M.
Beechem
,
Biophys. J.
58
,
1527
(
1990
).
11.
S. Y.
Chen
,
K. H.
Cheng
, and
B. W.
Van der Meer
,
Biochemistry
31
,
3759
(
1992
).
12.
H.
Walderhaug
,
O.
Soederman
, and
P.
Stilbs
,
J. Phys. Chem.
88
,
1655
(
1984
).
13.
H.
Nery
,
O.
Soederman
,
C. D.
,
H.
Walderhaug
, and
B.
Lindman
,
J. Phys. Chem.
90
,
5802
(
1986
).
14.
P. W.
Kuchel
,
A. J.
Lennon
, and
C.
Durrant
,
J. Magn. Reson.
112
,
1
(
1996
).
15.
M. G.
Brereton
and
C.
Butler
,
J. Phys. A
20
,
3955
(
1987
).
16.
D. C.
Khandekar
and
F. W.
Wiegel
,
J. Phys. (London) A
21
,
L563
(
1988
).
17.
Geometric Phases in Physics, edited by A. Shapere and F. Wilczek (World Scientific, Singapore, 1989).
18.
S.
Sinha
and
J.
Samuel
,
Phys. Rev. B
50
,
13871
(
1994
).
19.
J. Crank, The Mathematics of Diffusion (Oxford University Press, London, 1956).
20.
P. R. Bevington and D. K. Robinson, Data Reduction and Error Analysis for the Physical Sciences, 2nd ed. (McGraw–Hill, New York, 1994).
21.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in C: The Art of Scientific Computing, 2nd ed. (Cambridge University Press, Cambridge, 1992).
22.
L. Jansen and M. Boon, Theory of Finite Groups. Application in Physics: Symmetry Groups of Quantum Mechanical Systems (North–Holland, Amsterdam, 1967).
23.
S.
Chandrasekhar
,
Rev. Mod. Phys.
15
,
1
(
1943
).
24.
N.
Periasamy
,
S.
Doraiswamy
,
G. B.
Maiya
, and
B.
Venkataraman
,
J. Chem. Phys.
88
,
1638
(
1988
).
25.
K. V.
Bankar
,
V. R.
Bhagat
,
R.
Das
,
S.
Doraiswamy
,
A. S.
Ghangrekar
,
D. S.
Kamat
,
N.
Periasamy
,
V. J. P.
Srivatsavoy
, and
B.
Venkataraman
,
Indian J. Pure Appl. Chem.
27
,
416
(
1989
).
26.
A.
Grinvald
and
I. Z.
Steinberg
,
Anal. Biochem.
59
,
583
(
1974
).
27.
D. V. O’Connor and D. Philips, Time Correlated Single Photon Counting (Academic, London, 1984).
28.
R. F. Steiner, “Fluorescence anisotropy: Theory and applications,” in Topics in Fluorescence Spectroscopy, edited by J. R. Lakowicz (Plenum, New York, 1991), Vol. 2, p. 1.
29.
G. B.
Dutt
,
S.
Doraiswamy
,
N.
Periasamy
, and
B.
Venkataraman
,
J. Chem. Phys.
93
,
8498
(
1990
).
30.
A. J.
Cross
and
G. R.
Fleming
,
Biophys. J.
46
,
45
(
1984
).
31.
A. Abragam, The Principles of Nuclear Magnetism (Oxford University Press, London, 1961).
32.
E. Kreyszig, Advancesd Engineering Mathematics, 7th ed. (Wiley, New York, 1993).
33.
R.
Nityananda
,
Curr. Sci.
67
,
238
(
1994
).
34.
J. W.
Zwanziger
,
M.
Koenig
, and
A.
Pines
,
Annu. Rev. Phys. Chem.
41
,
601
(
1990
).
35.
M. M. G. Krishna, J. Samuel, and S. Sinha, “Brownian motion on a sphere: Distribution of solid angles” (unpublished).
36.
L. D. Landau and E. M. Lifshitz, Quantum Mechanics: Nonrelativistic Theory, 3rd ed. (Pergamon, Oxford, 1977).
37.
C. H. Townes and A. L. Schawlow, Microwave Spectroscopy (McGraw–Hill, New York, 1955).
38.
C.
Tanford
,
J. Phys. Chem.
76
,
3020
(
1972
).
39.
K. Kalyanasundaram, Photochemistry in Microheterogeneous Systems (Academic, New York, 1991).
40.
D. L.
Sacket
and
J.
Wolff
,
Anal. Biochem.
167
,
228
(
1987
).
41.
K. J.
Kinosita
,
S.
Kawato
, and
A.
Ikegami
,
Biophys. J.
20
,
289
(
1977
).
42.
G.
Lipari
and
A.
Szabo
,
Biophys. J.
30
,
489
(
1980
).
43.
N. A.
Mazer
,
G. B.
Benedek
, and
M. C.
Carey
,
J. Phys. Chem.
80
,
1075
(
1976
).
44.
M. J. Rosen, Surfactants and Interfacial Phenomena, 2nd ed. (Wiley, New York, 1989).
45.
C. Tanford, The Hydrophobic Effect: Formation of Micelles and Biological Membranes, 2nd ed. (Wiley, New York, 1980).
46.
M. P.
Heyn
,
FEBS Lett.
108
,
359
(
1979
).
47.
F.
Jahnig
,
Proc. Natl. Acad. Sci. USA
76
,
6361
(
1979
).
48.
D. B.
Hall
,
A.
Dhinojwala
, and
J. M.
Torkelson
,
Phys. Rev. Lett.
79
,
103
(
1997
).
49.
M.
Ameloot
,
H.
Hendrickx
,
W.
Herreman
,
H.
Pottel
,
F. V.
Cauvelaert
, and
W.
Van der Meer
,
Biophys. J.
46
,
525
(
1984
).
50.
S.
Wang
,
J. M.
Bechem
,
E.
Gratton
, and
M.
Glaser
,
Biochemistry
30
,
5565
(
1991
).
51.
C. D. Stubbs and B. W. Williams, “Fluorescence in Membranes,” in Topics in Fluorescence Spectroscopy, edited by J. R. Lakowicz (Plenum, New York, 1992), Vol. 3, p. 231.
52.
A.
Haibel
,
G.
Nimtz
,
R.
Pelster
, and
R.
Jaggi
,
Phys. Rev. E
57
,
4838
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.