It was demonstrated that finely discretized lattice models for fluids with particles interacting via Lennard-Jones or exponential-6 potentials have essentially identical thermodynamic and structural properties to their continuum counterparts. Grand canonical histogram reweighting Monte Carlo calculations were performed for systems with repulsion exponents between 11 and 22. Critical parameters were determined from mixed-field finite-size scaling methods. Numerical equivalence of lattice and continuous space models, within simulation uncertainties, was observed for lattices with ratio of particle diameter σ to grid spacing of 10. The lattice model calculations were more efficient computationally by factors between 10 and 20. It was also shown that Lennard-Jones and exponential-6 based models with identical critical properties can be constructed by appropriate choice of the repulsion exponent.

1.
E.
Ising
,
Z. Phys.
31
,
253
(
1925
).
2.
E.
Luijten
and
K.
Binder
,
Phys. Rev. E
58
,
R4060
(
1998
).
3.
I.
Carmesin
and
K.
Kremer
,
Macromolecules
21
,
2819
(
1988
);
H. P.
Deutsch
and
K.
Binder
,
J. Chem. Phys.
94
,
2294
(
1991
).
4.
R. F.
Rapold
and
W. L.
Mattice
,
J. Chem. Soc., Faraday Trans.
91
,
2435
(
1995
).
5.
P.
Doruker
and
W. L.
Mattice
,
Macromolecules
31
,
1418
(
1998
);
P.
Doruker
and
W. L.
Mattice
,
Macromol. Theory Simul.
8
,
463
(
1999
).
6.
T.
Haliloglu
and
W. L.
Mattice
,
J. Chem. Phys.
111
,
4327
(
1999
).
7.
A.
Kolinski
,
W.
Galazka
, and
J.
Skolnick
,
J. Chem. Phys.
108
,
2608
(
1998
).
8.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
9.
A. Z.
Panagiotopoulos
and
S. K.
Kumar
,
Phys. Rev. Lett.
83
,
2981
(
1999
).
10.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
102
,
7470
(
1998
).
11.
R. A.
Buckingham
,
Proc. R. Soc. London, Ser. A
168
,
264
(
1938
);
R. A.
Buckingham
,
Proc. R. Soc. London, Ser. A
168
,
378
(
1938
).
12.
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
441
(
1924
);
J. E.
Lennard-Jones
,
Proc. R. Soc. London, Ser. A
106
,
463
(
1924
).
13.
D. N.
Theodorou
and
U. W.
Suter
,
J. Chem. Phys.
82
,
955
(
1985
).
14.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
61
,
2635
(
1988
).
15.
A. M.
Ferrenberg
and
R. H.
Swendsen
,
Phys. Rev. Lett.
63
,
1195
(
1988
).
16.
N. B.
Wilding
and
A. D.
Bruce
,
J. Phys.: Condens. Matter
4
,
3087
(
1992
).
17.
A. D.
Bruce
and
N. B.
Wilding
,
Phys. Rev. Lett.
68
,
193
(
1992
).
18.
N. B.
Wilding
,
Phys. Rev. E
52
,
602
(
1995
).
19.
A. Z.
Panagiotopoulos
,
V.
Wong
, and
M. A.
Floriano
,
Macromolecules
31
,
912
(
1998
).
20.
J. J.
Potoff
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
10914
(
1998
).
21.
A. Z.
Panagiotopoulos
,
J. Phys.: Condens. Matter
12
,
R25
(
2000
).
22.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in FORTRAN, 2nd ed. (Cambridge University Press, Cambridge, 1992).
23.
J. K.
Johnson
,
J. A.
Zollweg
, and
K. E.
Gubbins
,
Mol. Phys.
78
,
591
(
1993
).
24.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
109
,
1093
(
1998
).
25.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
103
,
6314
(
1999
).
26.
A. D.
Mackie
,
A. Z.
Panagiotopoulos
,
D.
Frenkel
, and
S. K.
Kumar
,
Europhys. Lett.
27
,
549
(
1994
).
27.
A. D.
Mackie
,
A. Z.
Panagiotopoulos
, and
S. K.
Kumar
,
J. Chem. Phys.
102
,
1014
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.