An expression for the shear viscosity of molecular liquids is derived from the statistical expression for the stress tensor by taking into consideration density fluctuations over the intermolecular force range. The viscosity formula consists of a low density term given in terms of the Chapman–Enskog viscosity and a density dependent term reminiscent of the Stokes–Einstein relation between the viscosity and the self-diffusion coefficient. According to this formula, the shear viscosity of molecular liquids can be calculated in terms of intermolecular site–site forces, the corresponding pair correlation functions, and the self-diffusion coefficient as well as the Chapman–Enskog viscosity at low density. By treating the viscosity expression as a semiempirical formula where the experimental and numerically simulated self-diffusion coefficients available in the literature are used, the shear viscosities of nitrogen and carbon dioxide, both of which are treated as a rigid linear rotator with two sites, are calculated and compared with experiment. Agreement between theory and experiment is found very good qualitatively and quantitatively.

1.
K.
Rah
and
B. C.
Eu
,
Phys. Rev. E
60
,
4105
(
1999
).
2.
K.
Rah
and
B. C.
Eu
,
Phys. Rev. Lett.
83
,
4566
(
1999
).
3.
A. Einstein, Investigations on the Theory of the Brownian Movement (Dover, New York, 1956).
4.
H.
Farhat
and
B. C.
Eu
,
J. Chem. Phys.
104
,
300
(
1996
).
5.
See a review article by D. Chandler, in The Liquid State of Matter: Fluids, Simple, and Complex, edited by E. W. Montroll and J. L. Lebowitz (North–Holland, Amsterdam, 1982), p. 275.
6.
B. C. Eu, Kinetic Theory and Irreversible Thermodynamics (Wiley, New York, 1992).
7.
J. H.
Irving
and
J. G.
Kirkwood
,
J. Chem. Phys.
18
,
817
(
1950
).
8.
B. C. Eu, Nonequilibrium Statistical Mechanics: Ensemble Method (Kluwer, Dordrecht, 1998), p. 318.
9.
H.
Stassen
and
W. A.
Steele
,
J. Chem. Phys.
102
,
932
(
1995
).
10.
C. F.
Curtiss
,
J. Chem. Phys.
75
,
376
(
1981
).
11.
S. Chapman and T. G. Cowling, The Mathematical Theory of Nonuniform Gases, 3rd ed. (Cambridge, London, 1970).
12.
F. R. W. McCourt, J. J. M. Beenakker, W. E. Köhler, and I. Kuscer, Nonequilibrium Phenomena in Polyatomic Gases (Clarendon, Oxford, 1990), Vol. 1.
13.
In Ref. 1, the cutoff factor ϑ(|R|−ξ) was replaced with an adjustable parameter α defined by ω(ρ,T)=α(2π/15)∫0dRR5V(R)g(R,ρ̄;T), when the experimental data were compared with the theoretical values. However, this definition of α was missing in the paper. The aforementioned equation should be used as the definition of parameter α.
14.
J. G.
Kirkwood
,
J. Chem. Phys.
3
,
300
(
1935
).
15.
H.
Luo
and
C.
Hoheisel
,
J. Chem. Phys.
94
,
8378
(
1991
).
16.
J.
Barojas
,
D.
Levesque
, and
B.
Quentrec
,
Phys. Rev. A
7
,
1092
(
1973
).
17.
P. S. Y.
Cheung
and
J. G.
Powles
,
Mol. Phys.
30
,
921
(
1975
).
18.
B. A.
Younglove
,
J. Phys. Chem. Ref. Data Suppl.
11
, Suppl. No. 1 (
1982
).
19.
K.
Stephan
,
R.
Krauss
, and
A.
Laesecke
,
J. Phys. Chem. Ref. Data
16
,
993
(
1987
).
20.
C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids (Clarendon, Oxford, 1984), Vol. 1.
21.
A.
Boushehri
,
J.
Bzowski
,
J.
Kestin
, and
E. A.
Mason
,
J. Phys. Chem. Ref. Data
16
,
445
(
1987
).
22.
P. S.
van der Gulik
,
Physica A
238
,
81
(
1997
).
23.
W.
Herreman
,
A.
Lattenist
,
W.
Grevendonk
, and
A.
De Bock
,
Physica
52
,
489
(
1971
).
24.
D. E.
Diller
and
M. J.
Ball
,
Int. J. Thermophys.
6
,
619
(
1985
).
25.
V.
Vesovic
,
W. A.
Wakeham
,
G. A.
Olchowy
,
J. V.
Sengers
,
J. T. R.
Watson
, and
J.
Millat
,
J. Phys. Chem. Ref. Data
19
,
763
(
1990
), and references therein.
26.
A.
Fenghour
,
W. A.
Wakeham
, and
V.
Vesovic
,
J. Phys. Chem. Ref. Data
27
,
31
(
1998
), and references therein.
27.
K.
Singer
,
J. V. L.
Singer
, and
A. J.
Taylor
,
Mol. Phys.
37
,
1239
(
1979
).
28.
T.
Gross
,
J.
Buchhauser
, and
H.-D.
Lüdemann
,
J. Chem. Phys.
109
,
4518
(
1998
).
29.
P.
Etesse
,
J. A.
Zega
, and
R.
Kobayashi
,
J. Chem. Phys.
97
,
2022
(
1992
).
30.
D.
Fincham
,
N.
Quirke
, and
D. J.
Tildesley
,
J. Chem. Phys.
84
,
4535
(
1986
).
31.
K. D.
Timmerhaus
and
H. G.
Drickamer
,
J. Chem. Phys.
20
,
981
(
1952
).
32.
S. Angus, B. Armstrong, and K. M. de Reuck, International Thermodynamic Tables of the Fluid State: Carbon Dioxide (Pergamon, Oxford, 1976), Vol. 3.
33.
R.
Span
and
W.
Wagner
,
J. Phys. Chem. Ref. Data
25
,
1509
(
1996
).
34.
W. L.
Robb
and
H. G.
Drickamer
,
J. Chem. Phys.
19
,
1504
(
1951
).
35.
S. A.
Ulybin
and
V. I.
Makarushkhin
,
Teploenergetika
23
,
65
(
1976
).
36.
J. G.
Kirkwood
,
F. P.
Buff
, and
M. S.
Green
,
J. Chem. Phys.
17
,
988
(
1949
).
37.
J.
Kestin
,
Ö.
Korfali
, and
J. V.
Sengers
,
Physica A
100
,
335
(
1980
).
38.
H.
Iwasaki
and
M.
Takahashi
,
J. Chem. Phys.
74
,
1930
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.