We have measured the decay of fluorescence from the electron acceptors (A) dissolved in donor (D) solvent by femtosecond up-conversion spectroscopy with a time resolution of 75 fs. The measurements have been made for several acceptors (9-cyanoanthracene, CA; 9,10-dicyanoanthracene, DCA; and 1,2,9,10-tetracyanoanthracene, TCA) in the donor solvent (N,N-dimethylaniline, DMA, and aniline, ANL). The decay times obtained are between 150 fs (CA–ANL) and 280 fs (TCA–DMA). Observation of the decay of acceptor fluorescence and the concurrent rise of fluorescence from the exciplex state indicates that the excited acceptor (A*) state directly relaxes to the exciplex state. Charge separation rates (kCS) determined from the decay of the acceptor fluorescence lie between 3.6×1012–6.7×1012/s for six combinations of donors and acceptors. Very weak energy gap (ΔE) dependence of kCS was observed in the region of ΔE of 0.36–1.47 eV. This relation between kCS and ΔE is quite different from the charge recombination rate (kCR) vs ΔE relation in the charge transfer (CT) complexes, which has been reported by Mataga et al. The present result can be explained by a model which takes into account the interaction between the zeroth-order D⋅A* and D+⋅A states. Ultrafast charge separation would occur from the D⋅A* to exciplex state on an adiabatic potential curve without barrier along the coordinate of the intermolecular stretching vibration. This is considered to be induced by the strong interaction between the donor and acceptor at short distances.

1.
M.
Maroncelli
,
J.
MacInnis
, and
G. R.
Fleming
,
Science
243
,
1674
(
1989
).
2.
P. F.
Barbara
and
W.
Jarzeba
,
Adv. Photochem.
15
,
1
(
1990
).
3.
J.
Simon
,
Acc. Chem. Res.
21
,
128
(
1988
).
4.
K.
Tominaga
,
G. C.
Walker
,
W.
Jarzeba
, and
P. F.
Barbara
,
J. Phys. Chem.
95
,
10475
(
1991
).
5.
K.
Tominaga
,
G. C.
Walker
,
T. J.
Kang
,
P. F.
Barbara
, and
T.
Fonseca
,
J. Phys. Chem.
95
,
10485
(
1991
).
6.
G. C.
Walker
,
E.
Akesson
,
A. E.
Johnson
,
N. E.
Levinger
, and
P. F.
Barbara
,
J. Phys. Chem.
96
,
3728
(
1992
).
7.
T.
Kobayashi
,
Y.
Takagi
,
H.
Kandori
,
K.
Kemnitz
, and
K.
Yoshihara
,
Chem. Phys. Lett.
180
,
416
(
1991
).
8.
H.
Kandori
,
K.
Kemnitz
, and
K.
Yoshihara
,
J. Phys. Chem.
96
,
8042
(
1992
).
9.
Y.
Nagasawa
,
A. P.
Yartsev
,
K.
Tominaga
,
A. E.
Johnson
, and
K.
Yoshihara
,
J. Phys. Chem.
101
,
5717
(
1994
).
10.
Y.
Nagasawa
,
A. P.
Yartsev
,
K.
Tominaga
,
P. B.
Bishit
,
A. E.
Johnson
, and
K.
Yoshihara
,
J. Phys. Chem.
99
,
653
(
1995
).
11.
I. V.
Rubtsov
,
H.
Shirota
, and
K.
Yoshihara
,
J. Phys. Chem.
103
,
1801
(
1999
).
12.
H.
Miyasaka
,
S.
Ojima
, and
N.
Mataga
,
J. Phys. Chem.
93
,
3380
(
1989
);
S.
Ojima
,
H.
Miyasaka
, and
N.
Mataga
,
J. Phys. Chem.
94
,
4147
(
1990
);
S.
Ojima
,
H.
Miyasaka
, and
N.
Mataga
,
J. Phys. Chem.
94
,
5834
(
1990
);
S.
Ojima
,
H.
Miyasaka
, and
N.
Mataga
,
J. Phys. Chem.
94
,
7534
(
1990
).
13.
T.
Asahi
and
N.
Mataga
,
J. Phys. Chem.
93
,
6575
(
1989
);
T.
Asahi
and
N.
Mataga
,
J. Phys. Chem.
95
,
1956
(
1991
),
T.
Asahi
,
N.
Mataga
,
Y.
Takahashi
, and
T.
Miyashi
,
Chem. Phys. Lett.
171
,
309
(
1990
).
14.
T.
Asahi
and
N.
Mataga
,
J. Phys. Chem.
95
,
1956
(
1991
).
15.
T.
Asahi
,
M.
Ohkohchi
, and
M.
Mataga
,
J. Phys. Chem.
97
,
13132
(
1993
).
16.
H.
Miyasaka
,
S.
Kotani
, and
A.
Itaya
,
J. Phys. Chem.
99
,
5757
(
1995
).
17.
S.
Iwai
,
S.
Murata
, and
M.
Tachiya
,
J. Chem. Phys.
109
,
5963
(
1998
).
18.
In the ordinary sense, the exciplex is formed after the solvent-separated donor and acceptor approach to a contact distance by diffusion. However, in the present case, D and A* are in contact with each other, even if the complex is not formed. So, CS occurs to form the exciplex without diffusion.
19.
D.
Rehm
and
A.
Weller
,
Isr. J. Chem.
8
,
259
(
1970
);
D.
Rehm
and
A.
Weller
,
Ber. Bunsenges. Phys. Chem.
73
,
834
(
1969
).
20.
R.
Engleman
and
J.
Jortner
,
Mol. Phys.
18
,
145
(
1970
).
21.
I. R.
Gould
,
D.
Noukakis
,
L.
Gometz-Jahn
,
R. H.
Young
,
J. L.
Goodman
, and
S.
Farid
,
Chem. Phys.
176
,
439
(
1993
).
22.
Longitudinal relaxation time L) of the solvation can be evaluated by using the relation τL≈(ε0)×τD and τD=4a2/(5D) (Ref. 22), where τD,ε0, and ε are the Debye relaxation time and the static and optical dielectric constants, respectively. D and a are the diffusion coefficient and the molecular radius. For DMA solution, τL∼50 ps is obtained 0:5.01,ε:2.41,a:0.316 nm,D:0.69×10−5cm2/s). The time scale of τL of DMA is much longer than that of LE fluorescence decay we observed.
23.
C. J. F. Bottcher and P. Bordewijk, Theory of Electric Polarization, Vol. II (Elsevier, New York, 1996).
24.
Here, “intermolecular distance” has a more general meaning than usual. When an exciplex or a CT complex is formed, the distance, mutual orientation, and other factors are optimized. We should take all these factors into account to discuss the formation of the complex. For simplicity, we use the term intermolecular distance to represent all these factors.
25.
A. I.
Shushin
and
M.
Tachiya
,
Chem. Phys.
235
,
267
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.