The parameters of the anisotropic united atoms potential for linear alkanes proposed by Toxvaerd [S. Toxvaerd, J. Chem. Phys. 107, 5197 (1997)] have been optimized on the basis of selected equilibrium properties (vapor pressures, vaporization enthalpies, and liquid densities) of ethane, n-pentane, and n-dodecane. The optimized parameters for the CH2 and CH3 groups form a regular sequence with those of methane and the force centers are found between the carbon and hydrogen atoms, as expected. The resulting potential, called AUA4, has been compared with Toxvaerd’s potential (AUA3) by using several molecular simulation methods (Gibbs ensemble Monte Carlo, thermodynamic integration, and molecular dynamics). An investigation performed at temperatures ranging from 140 to 700 K and with various chain lengths up to 20 carbon atoms has shown AUA4 to provide systematic improvements of vapor pressures, vaporization enthalpies, and liquid densities for pure n-alkanes. Significant improvements have been also noticed on the critical temperatures of n-alkanes, estimated from coexistence density curves, and on the equilibrium properties of CO2n-alkane binary mixtures. Self-diffusion coefficients of n-hexane, however, are slightly improved by the new potential, but still exceed experimental measurements at low temperature. As we have only optimized the intermolecular potential in the present study, it is suggested that further optimization of the intramolecular potentials of the anisotropic united atoms model could allow simultaneous prediction of thermodynamic properties and of transport coefficients, particularly in very dense liquids.

1.
W. L.
Jorgensen
,
J. D.
Madura
, and
C. J.
Swenson
,
J. Am. Chem. Soc.
106
,
813
(
1984
).
2.
B.
Smit
,
S.
Karaborni
, and
J. I.
Siepmann
,
J. Chem. Phys.
102
,
2126
(
1995
).
3.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
102
,
2569
(
1998
).
4.
S. A.
Nath
,
F. A.
Escobedo
, and
J. J.
de Pablo
,
J. Chem. Phys.
108
,
9905
(
1998
).
5.
M. G.
Martin
and
J. I.
Siepmann
,
J. Phys. Chem. B
103
,
4508
(
1999
).
6.
S.
Toxvaerd
,
J. Chem. Phys.
93
,
4290
(
1990
).
7.
S.
Toxvaerd
,
J. Chem. Phys.
107
,
5197
(
1997
).
8.
P.
Padilla
and
S.
Toxvaerd
,
J. Chem. Phys.
94
,
5650
(
1991
).
9.
J.
Delhommelle
,
A.
Boutin
,
B.
Tavitian
,
A.
Mackie
, and
A. H.
Fuchs
,
Mol. Phys.
96
,
1517
(
1999
).
10.
D.
Dysthe
,
A. H.
Fuchs
, and
B.
Rousseau
,
J. Chem. Phys.
110
,
4047
(
1999
).
11.
D.
Dysthe
,
A. H.
Fuchs
, and
B.
Rousseau
,
J. Chem. Phys.
110
,
4060
(
1999
).
12.
A.
Panagiotopoulos
,
Mol. Phys.
61
,
813
(
1987
).
13.
B.
Smit
,
S.
Karaborni
, and
J. I.
Siepmann
,
J. Phys. Chem.
102
,
2126
(
1995
).
14.
K.
Esselink
,
L. D. J. C.
Loyens
, and
B.
Smit
,
Phys. Rev. E
51
,
1560
(
1995
).
15.
A. D.
Mackie
,
B.
Tavitian
,
A.
Boutin
, and
A. H.
Fuchs
,
Mol. Simul.
19
,
1
(
1997
).
16.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987).
17.
D. A.
Kofke
,
J. Chem. Phys.
98
,
4149
(
1993
).
18.
J. M.
Simon
,
D. K.
Dysthe
,
A. H.
Fuchs
, and
B.
Rousseau
,
Fluid Phase Equilibria
150-151
,
150
(
1998
).
19.
Handbook of Chemistry and Physics, 73rd ed. edited by D. R. Lide (CRC, New York, 1992).
20.
R. L.
Hilderbrandt
,
J. D.
Wieser
, and
L. K.
Montgomery
,
J. Am. Chem. Soc.
95
,
8598
(
1973
).
21.
K.
Palmö
,
N. G.
Mirkin
,
L. O.
Pietila
, and
S.
Krimm
,
Macromolecules
26
,
6831
(
1993
).
22.
S.
Fitzwater
and
L. S.
Bartell
,
J. Am. Chem. Soc.
98
,
5107
(
1976
).
23.
N. B. Vargaftik, Tables on the Thermophysical Properties of Liquids and Gases, 2nd ed. (Wiley, New York, 1975).
24.
J.
Gmehling
,
CODATA Bulletin
58
,
56
(
1985
).
25.
R. C. Reid, J. M. Prausnitz, and B. E. Poling, The Properties of Gases and Liquids. 4th ed. (McGraw-Hill, New York, 1986), p. 741.
26.
B. D. Smith and R. Srivastava, Thermodynamics of Pure Compounds: Hydrocarbons and Ketones (Elsevier, New York, 1986).
27.
J. G.
Harris
and
K. H.
Yung
,
J. Phys. Chem.
99
,
12021
(
1995
).
28.
G. J.
Besserer
and
D. B.
Robinson
,
J. Chem. Eng. Data
18
,
416
(
1973
).
29.
H. H.
Reamer
and
B. H.
Sage
,
J. Chem. Eng. Data
8
,
509
(
1963
).
30.
J.
Delhommelle
,
A.
Boutin
, and
A. H.
Fuchs
,
Mol. Simul.
22
,
351
(
1999
).
31.
K. R.
Harris
,
J. Chem. Soc., Faraday Trans. 1
78
,
2265
(
1982
).
32.
D.
Möller
,
J.
Oprzynski
,
A.
Müller
, and
J.
Fischer
,
Mol. Phys.
75
,
363
(
1992
).
33.
W. L.
Jorgensen
,
D. S.
Maxwell
, and
J.
Tirado-Rives
,
J. Am. Chem. Soc.
118
,
11225
(
1996
).
34.
S. T.
Cui
,
H. D.
Cochran
, and
P. T.
Cummings
,
J. Phys. Chem. B
103
,
4485
(
1999
).
35.
D. K. Dysthe, A. H. Fuchs, and B. Rousseau, J. Chem. Phys. (submitted).
36.
B.
Neubauer
,
A.
Boutin
,
B.
Tavitian
, and
A. H.
Fuchs
,
Mol. Phys.
97
,
769
(
1999
).
37.
J. R.
Errington
and
A. Z.
Panagiotopoulos
,
J. Phys. Chem. B
103
,
6314
(
1999
).
38.
B.
Chen
and
J. I.
Siepmann
,
J. Phys. Chem. B
103
,
5370
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.