Density functional theory (DFT) calculations of reaction paths and energies for the industrial and the biological catalytic ammonia synthesis processes are compared. The industrial catalyst is modeled by a ruthenium surface, while the active part of the enzyme is modeled by a MoFe6S9 complex. In contrast to the biological process, the industrial process requires high temperatures and pressures to proceed, and an explanation of this important difference is discussed. The possibility of a metal surface catalyzed process running at low temperatures and pressures is addressed, and DFT calculations have been carried out to evaluate its feasibility. The calculations suggest that it might be possible to catalytically produce ammonia from molecular nitrogen at low temperatures and pressures, in particular if energy is fed into the process electrochemically.

1.
S. R. Tennison, in Catalytic Ammonia Synthesis Fundamentals and Practice, edited by J. R. Jennings (Plenum, New York, 1991), p. 303.
2.
K.-I. Aika and K. Tamura, in Ammonia: Catalysis and Manufacture, edited by A. Nielsen (Springer-Verlag, Berlin, 1995), p. 103.
3.
L. Stryer, Biochemistry, 4 ed. (W. H. Freeman and Company, New York, 1995), p. 714.
4.
B. K.
Burgess
and
D. J.
Lowe
,
Chem. Rev.
96
,
2983
(
1996
).
5.
J. A.
Dumesic
,
H.
Topsøe
, and
M.
Boudart
,
J. Catal.
37
,
513
(
1975
).
6.
N. D.
Spencer
,
R. C.
Schoonmaker
, and
G. A.
Somorjai
,
J. Catal.
74
,
129
(
1982
).
7.
F.
Bozso
,
G.
Ertl
,
M.
Grunze
, and
M.
Weiss
,
J. Catal.
49
,
18
(
1977
).
8.
I.
Alstrup
,
I.
Chorkendorff
, and
S.
Ullmann
,
Z. Phys. Chem. (Leipzig)
198
,
123
(
1997
).
9.
S.
Dahl
,
A.
Logadottir
,
R. C.
Egeberg
,
J. H.
Larsen
,
I.
Chorkendorff
,
E.
Törnqvist
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
83
,
1814
(
1999
).
10.
O.
Hinrichsen
,
F.
Rosowski
,
M.
Muhler
, and
G.
Ertl
,
Chem. Eng. Sci.
51
,
1683
(
1996
).
11.
S.
Dahl
,
P. A.
Taylor
,
E.
Törnqvist
, and
I.
Chorkendorff
,
J. Catal.
178
,
679
(
1998
).
12.
P.
Stoltze
and
J. K.
Nørskov
,
Phys. Rev. Lett.
55
,
2502
(
1985
).
13.
P.
Stoltze
and
J. K.
Nørskov
,
J. Catal.
110
,
1
(
1988
).
14.
M.
Bowker
,
I.
Parker
, and
K. C.
Waugh
,
Surf. Sci.
197
,
L223
(
1988
).
15.
L. M. Aparicio and J. A. Dumesic, in Frontiers in Catalysis: Ammonia Synthesis and Beyond, Vol. 1 of Topics in Catalysis, edited by H. Topsøe, M. Boudart, and J. K. Nørskov (Baltzer, Basel, 1994), p. 233.
16.
J. J.
Mortensen
,
L. B.
Hansen
,
B.
Hammer
, and
J. K.
Nørskov
,
J. Catal.
182
,
479
(
1999
).
17.
F.
Bozso
,
G.
Ertl
,
M.
Grunze
, and
M.
Weiss
,
Appl. Surf. Sci.
1
,
103
(
1977
).
18.
J. K.
Nørskov
and
P.
Stoltze
,
Surf. Sci.
189/190
,
91
(
1987
).
19.
M. Mavrikakis, L. B. Hansen, J. J. Mortensen, B. Hammer, and J. K. Nørskov, in Transition State Modeling for Catalysis, Vol. 721 of ACE Symp. Ser., edited by D. G. Truhlar and K. Morokuma (1999), Chap. 19, p. 245.
20.
S. J.
George
,
G. A.
Ashby
,
C. W.
Wharton
, and
R. N. F.
Thorneley
,
J. Am. Chem. Soc.
119
,
6450
(
1997
).
21.
H. I.
Lee
,
B. J.
Hales
, and
B. M.
Hoffman
,
J. Am. Chem. Soc.
119
,
11395
(
1997
).
22.
K. L. C.
Grönberg
,
C. A.
Gormal
,
M. C.
Durrant
,
B. E.
Smith
, and
R. A.
Henderson
,
J. Am. Chem. Soc.
120
,
10613
(
1998
).
23.
H.-I.
Lee
,
K. S.
Thrasher
,
D. R.
Dean
,
W. E.
Newton
, and
B. M.
Hoffman
,
Biochemistry
37
,
13370
(
1998
).
24.
L. M.
Cameron
and
B. J.
Hales
,
Biochemistry
37
,
9449
(
1998
).
25.
T. L.
Gall
,
S. K.
Ibrahim
,
C. A.
Gormal
,
B. E.
Smith
, and
C. J.
Pickett
,
Chem. Comm.
9
,
773
(
1999
).
26.
S. K.
Ibrahim
,
K.
Vincent
,
C. A.
Gormal
,
B. E.
Smith
,
S. P.
Best
, and
C. J.
Pickett
,
Chem. Comm.
11
,
1019
(
1999
).
27.
J. B.
Howard
and
D. C.
Rees
,
Chem. Rev.
96
,
2965
(
1996
).
28.
M. K.
Chan
,
J.
Kim
, and
D. C.
Rees
,
Science
260
,
792
(
1993
).
29.
H. I.
Liu
,
A.
Filipponi
,
N.
Gavini
,
B. K.
Burgess
,
B.
Hedman
,
A.
DiCicoo
,
C. R.
Natoli
, and
K. O.
Hodgson
,
J. Am. Chem. Soc.
116
,
2418
(
1994
).
30.
J.
Christiansen
,
R. C.
Tittsworth
,
B. J.
Hales
, and
S. P.
Cramer
,
J. Am. Chem. Soc.
117
,
10017
(
1995
).
31.
J. W.
Peters
,
H. B.
Stowell
,
S. M.
Soltis
,
M. G.
Finnegan
,
M. K.
Johnson
, and
D. C.
Rees
,
Biochemistry
36
,
1182
(
1997
).
32.
I.
Harvey
,
R. W.
Strange
,
R.
Schneider
,
C. A.
Gormal
,
C. D.
Garner
,
S. S.
Hasnain
,
R. L.
Richards
, and
B. E.
Smith
,
Inorg. Chim. Acta
275–276
,
150
(
1998
).
33.
R. N. F. Thorneley and D. J. Lowe, in Molybdenum Enzymes, edited by T. G. Spiro (Wiley-Interscience, New York, 1985), Chap. 5.
34.
I.
Dance
,
Chem. Comm.
2
,
165
(
1997
).
35.
P. E. M.
Siegbahn
,
J.
Westerberg
,
M.
Svensson
, and
R. H.
Crabtree
,
Phys. Chem. B
102
,
1615
(
1998
).
36.
T. H.
Rod
,
B.
Hammer
, and
J. K.
Nørskov
,
Phys. Rev. Lett.
82
,
4054
(
1999
).
37.
W. N.
Lanzilotta
and
L. C.
Seefeldt
,
Biochemistry
36
,
12976
(
1997
).
38.
J. H.
Spee
,
A. F.
Arendsen
,
H.
Wassink
,
S. J.
Marritt
,
W. R.
Hagen
, and
H.
Haaker
,
FEBS Lett.
432
,
55
(
1998
).
39.
J. M.
Chan
,
M. J.
Ryle
, and
L. C.
Seefeldt
,
J. Biol. Chem.
274
,
17593
(
1999
).
40.
T. A.
Bazhenova
,
M. A.
Bazhenova
,
G. N.
Petrova
,
A. K.
Shilova
, and
A. E.
Shilov
,
Russ. Chem. Bull.
47
,
861
(
1998
).
41.
C. J.
Pickett
and
J.
Talarmin
,
Nature (London)
317
,
652
(
1985
).
42.
G. J.
Leigh
,
Acc. Chem. Res.
25
,
177
(
1992
).
43.
T. A.
Bazhenova
and
A. E.
Shilov
,
Coord. Chem. Rev.
144
,
69
(
1995
).
44.
J. P.
Perdew
,
J. A.
Chevary
,
S. H.
Vosko
,
K. A.
Jackson
,
M. R.
Pederson
,
D. J.
Singh
, and
C.
Fiolhais
,
Phys. Rev. B
46
,
6671
(
1992
).
45.
B.
Hammer
,
L. B.
Hansen
, and
J. K.
Nørskov
,
Phys. Rev. B
59
,
7413
(
1999
).
46.
D.
Vanderbilt
,
Phys. Rev. B
41
,
7892
(
1990
).
47.
N.
Troullier
and
J. L.
Martins
,
Phys. Rev. B
43
,
1993
(
1991
).
48.
G.
Kresse
and
J.
Furthmüller
,
Comput. Mater. Sci.
6
,
15
(
1996
).
49.
M. E.
Tuckerman
,
D.
Marx
,
M. L.
Klein
, and
M.
Parrinello
,
Science
275
,
817
(
1997
).
50.
W. W.
Cleland
,
P. A.
Frey
, and
J. A.
Gerlt
,
J. Biol. Chem.
273
,
25529
(
1998
).
51.
The rate at low ammonia pressures is given by r=2kθN2, where the rate constant, k, for b→c is proportional to exp(−(E(c)−E(b))/kBT).θN2 is the degree of N2 coverage, given by a Langmuir isotherm. For low coverage the Langmuir isotherm gives that θN2 is proportional to exp(−E(b)/kBT). We find, therefore, that r is proportional to exp(−E(c)/kBT) for low coverage.
52.
J. A.
Schwarz
,
Surf. Sci.
87
,
525
(
1979
).
53.
J. J.
Mortensen
,
B.
Hammer
, and
J. K.
Nørskov
,
Surf. Sci.
414
,
315
(
1998
).
54.
G. A.
Somorjai
and
Y.
Borodko
,
Catal. Lett.
59
,
89
(
1999
).
55.
G.
Marnellos
and
M.
Stoukides
,
Science
282
,
98
(
1998
).
56.
J. A.
Pople
and
L. A.
Curtiss
,
J. Chem. Phys.
95
,
4385
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.