In the weak-field limit, laser pulses optimized to induce vibrational wave packet recurrences in excited state potentials were calculated for Morse oscillators and for a real system [the X 1Σ+ and A 3Π(1) states of IBr]. The performance of the optimized pulses was studied via simulated wave packet propagation. Such optimal light fields may be computationally generated given only the form of the electronic potential surfaces, knowledge of the particular ground state supplying population, and simple molecular constants. Thus it should be possible to use the modulation of light fields experimentally optimized to achieve recurrences in order to obtain substantial information regarding previously uncharacterized potential surfaces in both diatomic and polyatomic molecules. Moreover, it should be possible to generalize this approach to the strong-field limit.

1.
Reviews:
W. S.
Warren
,
H.
Rabitz
, and
M.
Dahleh
,
Science
259
,
1581
(
1993
);
P. Brumer and M. Shapiro, in Molecules in Laser Fields edited by A. D. Bandrauk (Marcel Dekker, New York, 1994);
A. H.
Zewail
,
J. Phys. Chem.
100
,
12701
(
1996
);
F. F.
Crim
,
J. Phys. Chem.
100
,
12725
(
1996
);
R. J.
Gordon
and
S. A.
Rice
,
Annu. Rev. Phys. Chem.
48
,
595
(
1997
);
R. N.
Zare
,
Science
279
,
1875
(
1998
).
2.
D. J.
Tannor
and
S. A.
Rice
,
J. Chem. Phys.
83
,
5013
(
1985
).
3.
P.
Brumer
and
M.
Shapiro
,
Chem. Phys. Lett.
126
,
541
(
1986
);
P.
Brumer
and
M.
Shapiro
,
J. Chem. Phys.
84
,
4013
(
1986
).
4.
A.
Sinha
,
M. C.
Hsiao
, and
F. F.
Crim
,
J. Chem. Phys.
92
,
6333
(
1990
);
A.
Sinha
,
M. C.
Hsiao
, and
F. F.
Crim
,
J. Chem. Phys.
94
,
4298
(
1991
);
A.
Sinha
,
M. C.
Hsiao
, and
F. F.
Crim
,
J. Chem. Phys.
94
,
4298
(
1991
);
R. B.
Metz
,
J. D.
Thoemke
,
J. M.
Pfeiffer
, and
F. F.
Crim
,
J. Chem. Phys.
99
,
1744
(
1993
).
5.
T.
Baumert
,
V.
Engel
,
C.
Meier
, and
G.
Gerber
,
Chem. Phys. Lett.
200
,
488
(
1992
).
6.
J. L.
Herek
,
A.
Materny
, and
A. H.
Zewail
,
Chem. Phys. Lett.
228
,
15
(
1994
).
7.
R. D.
Guettler
,
G. C.
Jones
Jr.
,
L. A.
Posey
, and
R. N.
Zare
,
Science
266
,
259
(
1994
).
8.
Y.
Chui
,
H.
Fu
,
J.
Huang
, and
S. L.
Anderson
,
J. Chem. Phys.
101
,
5410
(
1994
);
Y.
Chui
,
H.
Fu
,
J.
Huang
, and
S. L.
Anderson
,
J. Chem. Phys.
102
,
1199
(
1995
).
9.
D. R.
Matusek
,
M. Yu.
Ivanov
, and
J. S.
Wright
,
Chem. Phys. Lett.
284
,
247
(
1998
).
10.
A.
Assion
,
T.
Baumert
,
M.
Bergt
,
T.
Brixner
,
B.
Kiefer
,
V.
Seyfried
,
M.
Strehle
, and
G.
Gerber
,
Science
282
,
919
(
1998
).
11.
S.
Shi
,
A.
Woody
, and
H.
Rabitz
,
J. Chem. Phys.
88
,
6870
(
1988
);
S.
Shi
and
H.
Rabitz
,
J. Chem. Phys.
92
,
364
(
1990
).
12.
R.
Kosloff
,
S. A.
Rice
,
P.
Gaspard
,
S.
Tersigni
, and
D. J.
Tannor
,
Chem. Phys.
139
,
2309
(
1989
).
13.
N. F.
Scherer
,
R. J.
Carlson
,
A.
Matro
,
M.
Du
,
A. J.
Ruggiero
,
V.
Romero-Rochin
,
J. A.
Cina
,
G. R.
Fleming
, and
S. A.
Rice
,
J. Chem. Phys.
95
,
1487
(
1991
).
14.
R. S.
Judson
and
H.
Rabitz
,
Phys. Rev. Lett.
68
,
1500
(
1992
).
15.
N. F.
Scherer
,
D. M.
Jonas
, and
G. R.
Fleming
,
J. Chem. Phys.
99
,
153
(
1993
).
16.
J. L.
Krause
,
R. M.
Whitnell
,
K. R.
Wilson
,
Y.
Yan
, and
S.
Mukamel
,
J. Chem. Phys.
99
,
6562
(
1993
).
17.
J. S.
Melinger
,
S. R.
Gandhi
,
A.
Hariharan
,
D.
Goswami
, and
W. S.
Warren
,
J. Chem. Phys.
101
,
6439
(
1994
).
18.
B.
Kohler
,
V. V.
Yakovlev
,
J.
Che
,
J. L.
Krause
,
M.
Messina
,
K. R.
Wilson
,
N.
Schwentner
,
R. M.
Whitnell
, and
Y.
Yan
,
Phys. Rev. Lett.
74
,
3360
(
1995
).
19.
V.
Dubov
and
H.
Rabitz
,
Chem. Phys. Lett.
235
,
309
(
1995
);
V.
Dubov
and
H.
Rabitz
,
J. Chem. Phys.
103
,
8412
(
1995
).
20.
D. B.
Bairagi
,
P.
Gross
, and
M. K.
Mishra
,
J. Phys. Chem. A
101
,
759
(
1997
).
21.
V. V.
Lozovoy
,
S. A.
Antipin
,
F. E.
Gostev
,
A. A.
Titov
,
D. G.
Tovbin
,
O. M.
Sarkisov
,
A. S.
Vetchinkin
, and
S. Ya.
Umanskii
,
Chem. Phys. Lett.
284
,
221
(
1998
).
22.
C. J.
Bardeen
,
V. V.
Yakovlev
,
K. R.
Wilson
,
S. D.
Carpenter
,
P. M.
Weber
, and
W. S.
Warren
,
Chem. Phys. Lett.
280
,
151
(
1997
).
23.
Y.
Ohtsuki
,
Y.
Yahata
,
H.
Kono
, and
Y.
Fujimura
,
Chem. Phys. Lett.
287
,
627
(
1998
).
24.
J.
Cao
,
C. J.
Bardeen
, and
K. R.
Wilson
,
Phys. Rev. Lett.
80
,
1406
(
1998
).
25.
V. D.
Kleiman
,
S. M.
Arrivo
,
J. S.
Melinger
, and
E. J.
Heilweil
,
Chem. Phys.
233
,
207
(
1998
).
26.
T.
Brixner
,
M.
Strehle
, and
G.
Gerber
,
Appl. Phys. B: Lasers Opt.
68
,
281
(
1999
).
27.
B. M. Goodson, Undergraduate thesis, Princeton University, 1995.
28.
W. Yang, F. Huang, M. R. Fetterman, J. C. Davis, D. Goswami, and W. S. Warren, IEEE Photonics Technol. Lett. (submitted).
29.
A. M.
Weiner
,
D. E.
Leaird
,
J. S.
Patel
, and
J. R.
Wullert
,
Opt. Lett.
15
,
326
(
1990
).
30.
C. W.
Hillegas
,
J. X.
Tull
,
D.
Goswami
,
D.
Strickland
, and
W. S.
Warren
,
Opt. Lett.
19
,
737
(
1994
);
J. X.
Tull
,
M. A.
Dugan
, and
W. S.
Warren
,
Adv. Magn. Opt. Reson.
20
,
1
(
1995
);
M. A.
Dugan
,
J. X.
Tull
, and
W. S.
Warren
,
J. Opt. Soc. Am. B
14
,
2348
(
1997
).
31.
J. P.
Foing
,
J. P.
Likforman
,
M.
Joiffre
, and
A.
Mignus
,
J. Quantum Electron.
28
,
2285
(
1992
);
J.-K.
Rhee
,
T. S.
Sosnowski
,
T. B.
Norris
,
J. A.
Arns
, and
W. S.
Colburn
,
Opt. Lett.
19
,
1550
(
1994
);
J.-K.
Rhee
,
T. S.
Sosnowski
,
A.-C.
Tien
, and
T. B.
Norris
,
J. Opt. Soc. Am. B
13
,
1780
(
1996
).
32.
R.
Trebino
and
D. J.
Kane
,
J. Opt. Soc. Am. A
10
,
1101
(
1993
).
33.
M. R.
Fetterman
,
D.
Goswami
,
D.
Keusters
,
W.
Yang
,
J.-K.
Rhee
, and
W. S.
Warren
,
Opt. Express
3
,
366
(
1998
).
34.
See, for example:
T. S.
Ho
,
H.
Rabitz
,
S. E.
Choi
, and
M. I.
Lester
,
J. Chem. Phys.
104
,
1187
(
1996
).
35.
D.
Appadoo
,
P.
Bernath
, and
R.
Le Roy
,
Can. J. Phys.
72
,
1265
(
1994
).
36.
See, for example: C. Cohen-Tannoudji, B. Diu, and F. Laloë, Quantum Mechanics (Hermann, Paris, 1977).
37.
C.
Moler
and
C.
Von Loan
,
SIAM Rev.
20
,
801
(
1978
);
M. D.
Feit
,
J. A.
Fleck
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
);
R.
Heather
and
H.
Metiu
,
J. Chem. Phys.
86
,
5009
(
1987
).
38.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipies: The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986).
39.
See, for example: L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Dover, New York, 1987).
40.
Performing such an experiment on a system comprised of two harmonic potentials would result in the creation of a Glauber state upon the excited state potential; see, for example,
R. J.
Glauber
,
Phys. Rev.
131
,
2766
(
1963
).
41.
P. M.
Morse
,
Phys. Rev.
34
,
57
(
1929
).
42.
Because μe is merely a scaling factor in weak-field calculations, its absolute value here is incidental.
43.
A corresponding increase in the bandwidth of the optimized pulse with increasing χe can also be observed, but this effect was smaller than the observed increase in pulse length.
44.
RKR1 and LEVEL are programs written by the research group of R. Le Roy, University of Waterloo, 1988.
45.
It was empirically determined that increasing the amplitude of the probe pulse by a factor of 2.05 produced the best results.
46.
Z.
Lu
and
H.
Rabitz
,
J. Phys. Chem.
99
,
13731
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.