Simulations have been performed at 480 K for pure melts of atactic, isotactic and syndiotactic polypropylene chains with a degree of polymerization of 50 and composition C150H302, and also for the three 50:50 mixtures of two of these species. The simulations are performed on a high coordination lattice, with incorporation of short range intramolecular interactions from a rotational isomeric state model of polypropylene, and incorporation of long range interactions defined by a Lennard-Jones potential energy function for the interaction of pairs of molecules of propane. Both the rotational isomeric state model and Lennard-Jones parameters were taken directly from the literature (Suter et al. and Prausnitz, respectively). The efficiency of the simulation on the sparsely occupied high coordination lattice facilitates the equilibration of the one- and two-component melts within accessible computer time. Onset of a tendency for demixing of isotactic and syndiotactic polypropylene is apparent in the intermolecular pair correlation functions. No such demixing occurs with isotactic and atactic polypropylene. Both of these predictions from the simulation are consistent with experimental results in the literature (Maier et al. and Lohse, respectively). The simulation produces an ambigious prediction for the melt of atactic and syndiotactic polypropylene. This melt has been reported (Maier et al.) to exhibit phase separation, but less strongly than the isotactic-syndiotactic system, for which the simulation makes an unambiguous (and correct) prediction. The physical origin of the tendency for demixing in the simulations is identified as the differences in the preferred local conformations of polypropylene chains with various stereochemical sequences. This driving force is an example of “conformational asymmetry” induced solely by differences in stereochemical sequence.

1.
R. J.
Composto
,
E. J.
Kramer
, and
D. W.
White
,
Macromolecules
25
,
4167
(
1992
).
2.
F. S.
Bates
,
M. F.
Schulz
,
J. H.
Rosedale
, and
K.
Almdal
,
Macromolecules
25
,
5547
(
1992
).
3.
H.
Jinnai
,
H.
Hasegawa
,
T.
Hashimoto
, and
C. C.
Han
,
Macromolecules
25
,
6078
(
1992
).
4.
P. F.
Nealey
,
R. E.
Cohen
, and
A. S.
Argon
,
Macromolecules
26
,
1287
(
1993
).
5.
G.-C.
Chung
,
J. A.
Kornfield
, and
S. D.
Smith
,
Macromolecules
27
,
964
(
1994
).
6.
S. A.
Heffner
and
P. A.
Mirau
,
Macromolecules
27
,
7283
(
1994
).
7.
K.
Adachi
,
T.
Wada
,
T.
Kawato
, and
T.
Kotaka
,
Macromolecules
28
,
3588
(
1995
).
8.
J. D.
Londono
and
G. D.
Wignall
,
Macromolecules
30
,
3821
(
1997
).
9.
R.
Krishnamoorti
,
W. W.
Graessley
,
L. F.
Fetters
,
R. T.
Garner
, and
D. J.
Lohse
,
Macromolecules
31
,
2312
(
1998
).
10.
H. S.
Jeon
,
J. H.
Lee
, and
N. P.
Balsara
,
Macromolecules
31
,
3328
(
1998
).
11.
B.
Crist
,
Macromolecules
31
,
5853
(
1998
).
12.
J. G.
Curro
and
K. S.
Schweizer
,
Macromolecules
23
,
1402
(
1990
).
13.
H. W.
Sevian
,
P. K.
Brazhnik
, and
J. E. G.
Lipson
,
J. Chem. Phys.
99
,
4112
(
1993
).
14.
Y.
Song
,
S. M.
Lammbert
, and
J. M.
Prausnitz
,
Chem. Eng. Sci.
49
,
2765
(
1994
).
15.
F. S.
Bates
and
G. H.
Fredrickson
,
Macromolecules
27
,
1065
(
1994
).
16.
G. H.
Fredrickson
,
A. J.
Liu
, and
F. S.
Bates
,
Macromolecules
27
,
2503
(
1994
).
17.
U. R.
Ridkar
and
I. C.
Sanchez
,
Macromolecules
28
,
3963
(
1995
).
18.
J.
Dudowicz
and
K. F.
Freed
,
Macromolecules
29
,
8960
(
1996
).
19.
J. K.
Taylor-Maranas
,
P. G.
Debenedetti
,
W. W.
Graessley
, and
S. K.
Kumar
,
Macromolecules
30
,
6943
(
1997
).
20.
R. F.
Rapold
and
W. L.
Mattice
,
J. Chem. Soc., Faraday Trans.
91
,
2435
(
1995
).
21.
R. F.
Rapold
and
W. L.
Mattice
,
Macromolecules
29
,
2457
(
1996
).
22.
J.
Cho
and
W. L.
Mattice
,
Macromolecules
30
,
637
(
1997
).
23.
P.
Doruker
and
W. L.
Mattice
,
Macromolecules
30
,
5520
(
1998
).
24.
T.
Haliloglu
,
J.
Cho
, and
W. L.
Mattice
,
Macromol. Theory Simul.
7
,
613
(
1998
).
25.
P.
Doruker
and
W. L.
Mattice
,
Macromolecules
31
,
1418
(
1998
).
26.
R.
Thomann
,
J.
Kressler
,
S.
Setz
,
C.
Wang
, and
R.
Mülhaupt
,
Polymer
37
,
2627
(
1996
).
27.
R.-D.
Maier
,
R.
Thomann
,
J.
Kressler
,
R.
Mülhaupt
, and
B.
Rudolf
,
J. Polym. Sci., Part B: Polym. Phys.
35
,
1135
(
1997
).
28.
D. J.
Lohse
,
Polym. Eng. Sci.
26
,
1500
(
1986
).
29.
J. Baschnagel, K. Binder, P. Doruker, A. Gusev, O. Hahn, K. Kremer, W. L. Mattice, F. Müller-Plathe, M. Murat, W. Paul, S. Santos, U. W. Suter, and V. Tries, Adv. Polym. Sci. (in press).
30.
T.
Haliloglu
and
W. L.
Mattice
,
J. Chem. Phys.
108
,
6989
(
1998
).
31.
G.
Raghunathan
and
R. L.
Jernigan
,
Protein Sci.
6
,
2072
(
1997
).
32.
R. A. Orwoll, in Physical Properties of Polymers Handbook, edited by J. E. Mark, (American Institute of Physics, Woodbury, New York, 1996), p. 81.
33.
A.
Eckstein
,
J.
Sulm
,
C.
Friedrich
,
R.-D.
Maier
,
J.
Sassmannshausen
,
M.
Bochmann
, and
R.
Mülhaupt
,
Macromolecules
31
,
1335
(
1998
).
34.
P. J. Flory, Statistical Mechanics of Chain Molecules (Wiley, New York, 1969).
35.
W. L. Mattice and U. W. Suter, Conformational Theory of Large Molecules. The Rotational Isomeric State Model in Macromolecular Systems (Wiley, New York, 1994).
36.
U. W.
Suter
,
S.
Pucci
, and
P.
Pino
,
J. Am. Chem. Soc.
97
,
1018
(
1975
).
37.
N.
Metropolis
,
A. N.
Rosenbluth
,
M. N.
Rosenbluth
,
A. H.
Teller
, and
E.
Teller
,
J. Chem. Phys.
21
,
1087
(
1953
).
38.
J. Prausnitz, Molecular Thermodynamics of Fluid-Phase Equilibrium (Prentice–Hall, Englewood Cliffs, New Jersey, 1986), p. 110.
39.
H.
Inagaki
,
T.
Miyamoto
, and
S.
Ohta
,
J. Phys. Chem.
70
,
3410
(
1966
).
40.
A.
Zirkel
,
V.
Urban
,
D.
Richter
,
L. J.
Fetters
,
J. S.
Huang
,
R.
Kampmann
, and
N.
Hadjichrstidis
,
Macromolecules
25
,
6148
(
1992
).
41.
G.
Moraglio
,
G.
Gianotti
, and
U.
Bonicelli
,
Eur. Polym. J.
9
,
623
(
1973
).
42.
J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, Inc., Monticello, New York, 1993), p. 117.
43.
P.
Doruker
and
W. L.
Mattice
,
Macromol. Symp.
133
,
47
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.