The two-dimensional vibrational spectroscopy involving two infrared (IR) pulses and a single optical pulse, which was theoretically proposed recently [J. Chem. Phys. 109, 10559 (1998)], is studied by using the ab initio calculation method for CHCl3. By obtaining the first- and second-order derivatives of the molecular dipole moment as well as the polarizability, the coherent 2D IR response function and its spectrum are calculated with an assumption that the vibrational dynamics can be described by the Brownian oscillator model. The origin of each peak in the entire coherent 2D IR spectrum is discussed in detail, and is directly compared with the coherent 2D Raman scattering spectrum of CHCl3. This comparison demonstrates the complementary nature between the coherent 2D IR and Raman spectroscopies. A brief discussion on the coupling patterns is also presented.

1.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
99
,
9496
(
1993
);
V.
Khidekel
and
S.
Mukamel
,
Chem. Phys. Lett.
240
,
304
(
1995
);
V.
Chernyak
and
S.
Mukamel
,
J. Chem. Phys.
108
,
5812
(
1998
).
2.
T.
Steppen
,
J. T.
Fourkas
, and
K.
Duppen
,
J. Chem. Phys.
105
,
7364
(
1996
).
3.
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
106
,
1687
(
1997
);
K.
Okumura
and
Y.
Tanimura
,
J. Chem. Phys.
107
,
2267
(
1997
).
4.
S.
Saito
and
I.
Ohmine
,
J. Chem. Phys.
108
,
240
(
1998
).
5.
(a)
R. L.
Murry
and
J. T.
Fourkas
,
J. Chem. Phys.
107
,
9726
(
1997
);
(b)
R. L.
Murry
,
J. T.
Fourkas
, and
T.
Keyes
,
J. Chem. Phys.
109
,
2814
(
1998
);
(c)
R. L.
Murry
,
J. T.
Fourkas
, and
T.
Keyes
,
J. Chem. Phys.
109
,
7913
(
1998
).
6.
D. J.
Ulness
,
J. C.
Kirkwood
, and
A. C.
Albrecht
,
J. Chem. Phys.
108
,
3897
(
1998
).
7.
M.
Cho
,
K.
Okumura
, and
Y.
Tanimura
,
J. Chem. Phys.
108
,
1326
(
1998
).
8.
M.
Cho
,
J. Chem. Phys.
109
,
6227
(
1998
).
9.
M. Cho, in Advances in Multi-Photon Processes and Spectroscopy, edited by S. H. Lin, A. A. Villaeys, and Y. Fujimura (World Scientific, Singapore, 1999), p. 229.
10.
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
76
,
987
(
1996
);
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
1159
()
K.
Tominaga
and
K.
Yoshihara
,
J. Chem. Phys.
104
,
4419
(
1996
)
K.
Tominaga
and
K.
Yoshihara
,
Phys. Rev. Lett.
74
,
3061
(
1996
).
11.
(a)
A.
Tokmakoff
and
G. R.
Fleming
,
J. Chem. Phys.
106
,
2569
(
1997
);
(b)
A.
Tokmakoff
,
M. J.
Lang
,
D. S.
Larsen
,
G. R.
Fleming
,
V.
Chernyak
, and
S.
Mukamel
,
Phys. Rev. Lett.
79
,
2707
(
1997
);
(c)
A.
Tokmakoff
,
M. J.
Lang
,
X. J.
Jordanides
, and
G. R.
Fleming
,
Chem. Phys.
233
,
231
(
1998
).
12.
T.
Steffen
and
K.
Duppen
,
J. Chem. Phys.
106
,
3854
(
1997
);
T.
Steffen
and
K.
Duppen
,
Phys. Rev. Lett.
76
,
1224
(
1996
).
13.
A.
Lau
,
M.
Pfeiffer
, and
A.
Kummrow
,
Chem. Phys. Lett.
263
,
435
(
1996
);
A.
Lau
,
M.
Pfeiffer
,
V.
Kozich
, and
F.
Tschirschwitz
,
J. Chem. Phys.
108
,
4173
(
1998
).
14.
K.
Park
and
M.
Cho
,
J. Chem. Phys.
109
,
10559
(
1998
).
15.
S.
Hahn
,
K.
Park
, and
M.
Cho
,
J. Chem. Phys.
111
,
4121
(
1999
) preceding paper.
16.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995).
17.
The GAUSSIAN 94 program was used. M. J. Frisch, G. W. Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T. Keith, G. A. Petersson, J. A. Montgomery, K. Raghavachari, M. A. AlLham, V. G. Zakrzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M. Challacombe, C. Y. Peng, P. Y. Ayala, W. Chem, M. W. Wong, J. L. Andres, E. S. Replogle, R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. J. DeFrees, J. Baker, J. P. Stewart, M. Head-Gordon, C. Gonzalez, and J. A. Pople, GAUSSIAN 94, (Gaussian Inc., Pittsburgh, PA, 1994).
18.
D. A. McQuarrie, Statistical Mechanics (Harper and Row, New York, 1976).
19.
J. G. Grasselli and W. M. Ritchey, Atlas of Spectral Data and Physical Constants for Organic Compounds (CRC Press, Cleveland, 1975), Vol. I, p. 385.
20.
M.
Cho
,
J. Chem. Phys.
111
,
4140
(
1999
), following paper.
This content is only available via PDF.
You do not currently have access to this content.