The thermodynamics of solvation of a dipole in hard sphere solvents with dipoles and quadrupoles is studied by using the Padé approximation for the perturbation expansion of the solvation chemical potential and compared to Monte Carlo simulations. Solvation chemical potentials, energies, and entropies of solvation are obtained at different dipolar and quadrupolar solvent strengths. The effect of nonlinear solvation is analyzed and found not to exceed 10% in the parameter range studied. An agreement between the simulations and the analytical theory is obtained by an empirical rescaling of the triple perturbation integrals of the perturbation expansion. This rescaling does not, however, provide a quantitatively correct partitioning of the solvation free energy into the energy and entropy of solvation.

1.
(a)
G. N.
Patey
,
D.
Levesque
, and
J. J.
Weis
,
Mol. Phys.
38
,
1635
(
1979
);
(b)
G.
Stell
,
G. N.
Patey
, and
J. S.
Ho/ye
,
Adv. Chem. Phys.
18
,
183
(
1981
).
2.
(a)
J.
Richardi
,
P. H.
Fries
,
R.
Fischer
,
S.
Rast
, and
H.
Krienke
,
J. Mol. Liq.
73–74
,
465
(
1997
);
(b)
P. H.
Fries
,
J.
Richardi
, and
H.
Krienke
,
Mol. Phys.
90
,
841
(
1997
);
(c)
J.
Richardi
,
C.
Millot
, and
P. H.
Fries
,
J. Chem. Phys.
110
,
1138
(
1999
).
3.
L.
Reynolds
,
S. J. V.
Frankland
,
M. L.
Horng
, and
M.
Maroncelli
,
J. Phys. Chem.
100
,
10337
(
1996
).
4.
(a)
L. R.
Evangelista
and
G.
Barbero
,
Phys. Lett. A
185
,
213
(
1994
);
(b)
S. M.
Chitanvis
,
J. Chem. Phys.
104
,
9065
(
1996
).
5.
(a)
M.
Flytzani-Stephanopoulos
,
K. E.
Gubins
, and
C. G.
Gray
,
Mol. Phys.
30
,
1649
(
1975
);
(b)
G. N.
Patey
and
J. P.
Valleau
,
J. Chem. Phys.
64
,
170
(
1976
).
6.
The solvent reorganization energy of optical transitions becomes negative for such nonpolar solvents as benzene when the continuum response with nonzero quadrupolar susceptibility [Ref. 4(b)] is used in the calculations.
7.
(a)
D.
Chandler
and
H. C.
Andersen
,
J. Chem. Phys.
57
,
1930
(
1972
);
(b)
F.
Hirata
and
P. J.
Rossky
,
Chem. Phys. Lett.
83
,
329
(
1981
);
(c)
B. M.
Ladanyi
and
D.
Chandler
,
J. Chem. Phys.
62
,
4308
(
1975
);
(d)
Y.
Zhou
,
H. L.
Friedman
, and
G.
Stell
,
Chem. Phys.
152
,
185
(
1991
);
(e)
B.-C.
Perng
,
M. D.
Newton
,
F. O.
Raineri
, and
H. L.
Friedman
,
J. Chem. Phys.
104
,
7177
(
1996
);
(f)
S.-H.
Chong
and
F.
Hirata
,
J. Chem. Phys.
106
,
5225
(
1997
).
(g)
F. O.
Raineri
,
B.-C.
Perng
, and
H. L.
Friedman
,
Electrochim. Acta
42
,
2749
(
1997
).
8.
C. G. Gray and K. E. Gubbins, Theory of Molecular Fluids. V. 1: Fundamentals (Clarendon, Oxford, 1984).
9.
(a)
G.
Stell
,
J. C.
Rasaiah
, and
H.
Narang
,
Mol. Phys.
23
,
393
(
1972
);
(b)
G. S.
Rushbrooke
,
G.
Stell
, and
J. S.
Ho/ye
,
Mol. Phys.
26
,
1199
(
1973
);
(c)
B.
Larsen
,
J. C.
Rasaiah
, and
G.
Stell
,
Mol. Phys.
33
,
987
(
1977
);
(d) G. Stell, in Modern Theoretical Chemistry, V. 5. Part A. Equilibrium Techniques, edited by B. J. Berne (Plenum, New York, 1977).
10.
(a)
D. V.
Matyushov
and
R.
Schmid
,
J. Chem. Phys.
105
,
4729
(
1996
);
(b)
D. V.
Matyushov
and
B. M.
Ladanyi
,
J. Chem. Phys.
107
,
1362
(
1997
);
(c)
D. V.
Matyushov
and
B. M.
Ladanyi
,
J. Chem. Phys.
110
,
994
(
1999
).
11.
(a)
P. H.
Fries
and
G. N.
Patey
,
J. Chem. Phys.
82
,
429
(
1985
);
(b)
P. H.
Lee
and
B. M.
Ladanyi
,
J. Chem. Phys.
87
,
4093
(
1987
);
(c)
P. G.
Kusalik
and
G. N.
Patey
,
J. Chem. Phys.
88
,
7715
(
1988
).
12.
(a)
F.
Garisto
,
P. G.
Kusalik
, and
G. N.
Patey
,
J. Chem. Phys.
79
,
6294
(
1983
);
(b)
H.-A.
Yu
and
M.
Karplus
,
J. Chem. Phys.
89
,
2366
(
1988
).
(c)
N. M.
Cann
and
G. N.
Patey
,
J. Chem. Phys.
106
,
8165
(
1997
).
13.
D. V.
Matyushov
and
B. M.
Ladanyi
,
J. Chem. Phys.
107
,
5815
(
1997
).
14.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
15.
S. W.
Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Annu. Rev. Phys. Chem.
37
,
245
(
1986
).
16.
S.
Jiang
and
K. S.
Pitzer
,
J. Chem. Phys.
102
,
7632
(
1995
).
17.
(a)
M.
Bohn
,
J.
Fischer
, and
J. M.
Haile
,
Mol. Phys.
65
,
797
(
1988
);
(b)
C.
Vega
and
K. E.
Gubbins
,
Mol. Phys.
72
,
881
(
1992
);
(c)
G. S.
Dubey
and
S. F.
O’Shea
,
Phys. Rev. E
49
,
2175
(
1994
);
(d)
J. M.
Polson
and
E. E.
Burnell
,
Phys. Rev. E
55
,
4321
(
1997
).
(e)
S. F.
O’Shea
,
G. S.
Dubey
, and
J. C.
Rasaiah
,
J. Chem. Phys.
107
,
237
(
1997
).
18.
Higher order terms in m02 can be included in a nonlinear Padé form [Refs. 10(b), 10(c)]. We, however, refrain from doing that in this paper, since already a linear response needs empirical corrections to fit the simulation data.
19.
According to the simulations by Patey and Valleau [Ref. 5(b)], yq(∂ ln gK/∂yq)≃−0.1 at (m*)2=1.0 and (Q*)2=0.4. A dependence of gK on yq is not, therefore, expected to modify considerably χs compared with the purely dipolar case gK(yd).
20.
The temperature evolution of absorption and emission maxima of optical transitions in acetonitrile as a solvent has been successfully analyzed within the Padé solvation model, P. Vath, M. B. Zimmt, D. V. Matyushov, and G. A. Voth, J. Phys. Chem. B (in press).
21.
(a)
R. J.
Bell
,
J. Phys. B
3
,
751
(
1970
);
(b)
J. C.
Rasaiah
and
G.
Stell
,
Chem. Phys. Lett.
25
,
519
(
1974
).
22.
(a)
L.
Verlet
and
J.-J.
Weis
,
Phys. Rev. A
5
,
939
(
1972
);
(b)
L. L.
Lee
and
D.
Levesque
,
Mol. Phys.
26
,
1351
(
1973
).
This content is only available via PDF.
You do not currently have access to this content.