The excited state mixing effect is taken into account considering the difference spectra of dimers. Both the degenerate (homo) dimer as well as the nondegenerate (hetero) dimer are considered. Due to the higher excited state mixing with the two-exciton states in the homodimer, the excited state absorption (or the difference spectrum) can be strongly affected in comparison with the results obtained in the Heitler–London approximation. The difference spectrum of the heterodimer is influenced by two resonance effects (i) mixing of the ground state optical transitions of both monomers in the dimer and (ii) mixing of the excited state absorption of the excited monomer with the ground state optical transition in the nonexcited monomer. These effects have been tested by simulating the difference absorption spectra of the light-harvesting complex of photosystem II (LHC II) experimentally obtained with the 60 fs excitation pulses at zero delay times and various excitation wavelengths. The pairs of coupled chlorophylls a and b for simulations have been taken from the best LHC II assignment model obtained by simulating the steady-state spectra and the transient absorption at various excitation wavelengths. Qualitatively the spectral peculiarities of the difference spectra are explained by means of the resonance interpigment interactions, which are responsible for the excited state mixing.

1.
M.
van Burgel
,
D. A.
Wiersma
, and
K.
Duppen
,
J. Chem. Phys.
102
,
20
(
1995
).
2.
A. S. Davydov, Theory of Molecular Excitons (Plenum, New York, 1971).
3.
V. I.
Novoderezhkin
and
A. P.
Razjivin
,
Biophys. J.
68
,
1089
(
1995
).
4.
V.
Liuolia
,
L.
Valkunas
, and
R.
van Grondelle
,
J. Phys. Chem. B
101
,
7343
(
1997
).
5.
T.
Renger
and
V.
May
,
J. Phys. Chem. B
101
,
7232
(
1997
).
6.
G.
McDermott
,
S. M.
Prince
,
A. A.
Freer
,
A.
Hawthornthwaite-Lawless
,
M.
Papiz
,
R. J.
Cogdell
, and
N. W.
Isaacs
,
Nature (London)
374
,
517
(
1995
).
7.
J.
Koepke
,
X.
Hu
,
C.
Muenke
,
K.
Schulten
, and
H.
Michel
,
Struct. Chem.
4
,
449
(
1996
).
8.
S.
Karrasch
,
P. A.
Bullough
, and
R.
Ghosh
,
EMBO J.
14-4
,
631
(
1995
).
9.
H.-M.
Wu
,
N. R. S.
Reddy
, and
G. J.
Small
,
J. Phys. Chem. B
101
,
651
(
1997
).
10.
R.
Monshouwer
,
M.
Abrahamsson
,
F.
van Mourik
, and
R.
van Grondelle
,
J. Phys. Chem. B
101
,
7241
(
1997
).
11.
M.
Chachisvilis
,
O.
Kuhn
,
T.
Pullerits
, and
V.
Sundström
,
J. Phys. Chem. B
101
,
7275
(
1997
).
12.
R.
van Grondelle
,
R.
Monshouwer
, and
L.
Valkunas
,
Pure Appl. Chem.
69
,
1211
(
1997
).
13.
D.
Leupold
,
H.
Stiel
,
K.
Teuchner
,
F.
Nowak
,
W.
Saudner
,
B.
Ücker
, and
H.
Scheer
,
Phys. Rev. Lett.
77
,
4675
(
1996
).
14.
W.
Kühlbrandt
,
D. N.
Wang
, and
Y.
Fujiyoshi
,
Nature (London)
367
,
614
(
1994
).
15.
D.
Gülen
,
R.
van Grondelle
, and
H.
van Amerongen
,
J. Phys. Chem. B
101
,
7256
(
1997
).
16.
O.
Kühn
and
S.
Mukamel
,
J. Phys. Chem. B
101
,
809
(
1997
).
17.
G.
Trinkunas
,
J. P.
Connelly
,
M. G.
Müller
,
L.
Valkunas
, and
A. R.
Holzwarth
,
J. Phys. Chem. B
101
,
7313
(
1997
).
18.
T.
Renger
and
V.
May
,
Phys. Rev. Lett.
78
,
3406
(
1997
).
19.
T.
Renger
and
V.
May
,
Photochem. Photobiol.
66
,
618
(
1997
).
20.
J. P. M.
Schelvis
and
T. J.
Aartsma
,
Chem. Phys.
194
,
303
(
1995
).
21.
D. R.
Buck
,
S.
Savikhin
, and
W. S.
Struve
,
Biophys. J.
72
,
24
(
1997
).
22.
A.
Scherz
and
W. W.
Parson
,
Biochim. Biophys. Acta
766
,
666
(
1984
).
23.
L.
Valkunas
and
V.
Cervinskas
,
Lith. Phys. J.
38
,
101
(
1998
).
24.
M. H. C.
Koolhaas
,
G.
van der Zwan
,
F.
van Mourik
, and
R.
van Grondelle
,
Biophys. J.
72
,
1828
(
1997
).
25.
J.
Knoester
and
F. C.
Spano
,
Phys. Rev. Lett.
74
,
2780
(
1995
).
26.
V.
Chernyak
and
S.
Mukamel
,
J. Opt. Soc. Am. B
13
,
1302
(
1996
).
27.
V.
Chernyak
,
N.
Wang
, and
S.
Mukamel
,
Phys. Rep.
263
,
213
(
1995
).
28.
O.
Kühn
,
V.
Chernyak
, and
S.
Mukamel
,
J. Chem. Phys.
105
,
8586
(
1996
).
29.
J. S.
Briggs
and
A.
Herzenberg
,
J. Phys. B
3
,
1663
(
1970
).
30.
L. D.
Bakalis
and
J.
Knoester
,
J. Chem. Phys.
106
,
6964
(
1997
).
31.
J. P.
Connelly
,
M. G.
Müller
,
M.
Hucke
,
G.
Gatzen
,
C. W.
Mullineaux
,
A. V.
Ruban
,
P.
Horton
, and
A. R.
Holzwarth
,
J. Phys. Chem. B
101
,
1902
(
1997
).
32.
A. R.
Holzwarth
and
M. G.
Müller
,
Biochemistry
35
,
11820
(
1996
).
33.
C. H.
Brito-Cruz
,
R. L.
Fork
,
W. H.
Knox
, and
C. V.
Shank
,
Chem. Phys. Lett.
132
,
341
(
1986
).
34.
E. Gaizauskas, L. Valkunas, M. G. Müller, and A. R. Holzwarth (unpublished).
35.
J. F.
Shepanski
, and
R. W.
Anderson
,
Chem. Phys. Lett.
78
,
165
(
1981
).
36.
M. A. M. J.
van Zandvoort
,
D.
Wrobel
,
P.
Lettinga
,
G.
van Ginkel
, and
Y. K.
Levine
,
Photochem. Photobiol.
62
,
299
(
1995
).
37.
R. Bassi (private communication).
38.
G. Trinkunas, M. G. Müller, I. Martin, L. Valkunas, and A. R. Holzwarth (unpublished).
39.
M.
van Gurp
,
U.
van der Heide
,
J.
Verhagen
,
T.
Piters
,
G.
van Ginkel
, and
Y. K.
Levine
,
Photochem. Photobiol.
49
,
663
(
1989
).
40.
E. J. G.
Peterman
,
R.
Monshouwer
,
I. H. M.
van Stokkum
,
R.
van Grondelle
, and
H.
van Amerongen
,
Chem. Phys. Lett.
264
,
279
(
1997
).
41.
L. L.
Shipman
,
T. M.
Cotton
,
J. R.
Norris
, and
J. J.
Katz
,
J. Am. Chem. Soc.
98
,
8222
(
1976
).
42.
S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York, 1995).
43.
T.
Bittner
,
K.-D.
Irrgang
,
G.
Renger
and
M. R.
Wasielewski
,
J. Phys. Chem.
98
,
11821
(
1994
).
44.
G.
Juzeliunas
and
P.
Reineker
,
J. Chem. Phys.
109
,
6916
(
1998
).
45.
D.
Sandona
,
R.
Croce
,
A.
Pagano
,
M.
Crimi
, and
R.
Bassi
,
Biochim. Biophys. Acta
1365
,
207
(
1998
).
This content is only available via PDF.
You do not currently have access to this content.